Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ginsenoside (20)S-APPT induces ferroptosis in hepatocellular carcinoma and cholangiocarcinoma by targeting FSP1

Abstract

Triggering ferroptosis has recently been recognized as a promising approach for cancer treatment. However, current ferroptosis inducers, such as glutathione peroxidase 4 (GPX4) inhibitors, face limitations in terms of druggability and safety. In this study, we performed a phenotypic screen of a 180-compound natural product library and identified (20S)-protopanaxatriol ((20)S-APPT), a ginsenoside derivative, as a potent ferroptosis inducer with a favorable safety profile both in vitro and in vivo. We demonstrated that (20)S-APPT induced ferroptosis by targeting the plasma membrane-localized CoQ10 oxidoreductase FSP1. FSP1 inhibition promoted ACSL4-dependent arachidonic acid oxidation and mitochondrial ROS production, thereby increasing ferroptosis. Intriguingly, we revealed that FSP1 inhibition alone was sufficient to trigger ferroptosis in a subset of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) cells. Furthermore, the combined inhibition of FSP1 and γ-glutamylcysteine synthetase (GCS) synergistically induced ferroptosis in otherwise resistant cancer cells while sparing noncancerous cells. These results establish a previously unrecognized role for FSP1 in driving ferroptosis and highlight the therapeutic potential of cotargeting FSP1 and GCS in HCC and CCA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: (20)S-APPT is a novel ferroptosis inducer.
Fig. 2: SLC7A11-GSH pathway is dispensable for (20)S-APPT-induced ferroptosis.
Fig. 3: (20)S-APPT acts as an FSP1 inhibitor to induce ferroptosis.
Fig. 4: Plasma membrane-localized FSP1 plays a key role in (20)S-APPT-induced ferroptosis.
Fig. 5: FSP1 inhibition activates ACSL4 phosphorylation and promotes arachidonic acid oxidation.
Fig. 6: FSP1 inhibition induces mitochondrial ROS production to promote ferroptosis.
Fig. 7: The addiction of a subset of HCC and CCA cells to FSP1.
Fig. 8: GSH elimination through GCS inhibition effectively and broadly resensitizes cancer cells to FSP1 inhibitors.

Similar content being viewed by others

Data availability

The raw RNA sequencing data have been deposited in the Gene Expression Omnibus under the accession number GSE284669. All data in our study are available upon reasonable request from the corresponding authors.

References

  1. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185:2401–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Dixon SJ, Olzmann JA. The cell biology of ferroptosis. Nat Rev Mol Cell Biol. 2024;25:424–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575:693–8.

    Article  PubMed  CAS  Google Scholar 

  6. Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021;593:586–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Muller C, Zandkarimi F, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 2020;6:41–53.

    Article  PubMed  CAS  Google Scholar 

  8. Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 2020;16:1351–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, et al. Ferroptosis in cancer: from molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther. 2024;9:55.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer. 2022;21:47.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22:381–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15:234–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Weiwer M, Bittker JA, Lewis TA, Shimada K, Yang WS, MacPherson L, et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg Med Chem Lett. 2012;22:1822–6.

    Article  PubMed  CAS  Google Scholar 

  14. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014;3:e02523.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol. 2019;26:623–33.e9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kim R, Hashimoto A, Markosyan N, Tyurin VA, Tyurina YY, Kar G, et al. Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature. 2022;612:338–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91.

    Article  PubMed  CAS  Google Scholar 

  19. Carlson BA, Tobe R, Yefremova E, Tsuji PA, Hoffmann VJ, Schweizer U, et al. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 2016;9:22–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lv Y, Liang C, Sun Q, Zhu J, Xu H, Li X, et al. Structural insights into FSP1 catalysis and ferroptosis inhibition. Nat Commun. 2023;14:5933.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nakamura T, Mishima E, Yamada N, Mourao ASD, Trumbach D, Doll S, et al. Integrated chemical and genetic screens unveil FSP1 mechanisms of ferroptosis regulation. Nat Struct Mol Biol. 2023;30:1806–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mishima E, Ito J, Wu Z, Nakamura T, Wahida A, Doll S, et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature. 2022;608:778–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dai E, Zhang W, Cong D, Kang R, Wang J, Tang D. AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochem Biophys Res Commun. 2020;523:966–71.

    Article  PubMed  CAS  Google Scholar 

  24. Hendricks JM, Doubravsky CE, Wehri E, Li Z, Roberts MA, Deol KK, et al. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis. Cell Chem Biol. 2023;30:1090–103.e7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nakamura T, Hipp C, Santos Dias Mourao A, Borggrafe J, Aldrovandi M, Henkelmann B, et al. Phase separation of FSP1 promotes ferroptosis. Nature. 2023;619:371–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Muller F, Lim JKM, Bebber CM, Seidel E, Tishina S, Dahlhaus A, et al. Elevated FSP1 protects KRAS-mutated cells from ferroptosis during tumor initiation. Cell Death Differ. 2023;30:442–56.

    Article  PubMed  Google Scholar 

  27. Wu YC, Huang CS, Hsieh MS, Huang CM, Setiawan SA, Yeh CT, et al. Targeting of FSP1 regulates iron homeostasis in drug-tolerant persister head and neck cancer cells via lipid-metabolism-driven ferroptosis. Aging. 2024;16:627–47.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Pontel LB, Bueno-Costa A, Morellato AE, Carvalho Santos J, Roue G, Esteller M. Acute lymphoblastic leukemia necessitates GSH-dependent ferroptosis defenses to overcome FSP1-epigenetic silencing. Redox Biol. 2022;55:102408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yoshioka H, Kawamura T, Muroi M, Kondoh Y, Honda K, Kawatani M, et al. Identification of a small molecule that enhances ferroptosis via inhibition of ferroptosis suppressor protein 1 (FSP1). ACS Chem Biol. 2022;17:483–91.

    Article  PubMed  CAS  Google Scholar 

  30. Cajka T, Smilowitz JT, Fiehn O. Validating quantitative untargeted lipidomics across nine liquid chromatography-high-resolution mass spectrometry platforms. Anal Chem. 2017;89:12360–8.

    Article  PubMed  CAS  Google Scholar 

  31. Oh SJ, Ikeda M, Ide T, Hur KY, Lee MS. Mitochondrial event as an ultimate step in ferroptosis. Cell Death Discov. 2022;8:414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yuk H, Abdullah M, Kim DH, Lee H, Lee SJ. Necrostatin-1 prevents ferroptosis in a RIPK1- and IDO-independent manner in hepatocellular carcinoma. Antioxidants 2021;10:1347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jang S, Lim Y, Valacchi G, Sorn S, Park H, Park NY, et al. Preventive effects of protopanaxadiol and protopanaxatriol ginsenosides on liver inflammation and apoptosis in hyperlipidemic apoE KO mice. Genes Nutr. 2012;7:319–29.

    Article  PubMed  CAS  Google Scholar 

  34. Li Y, Wang P, Zou Z, Pan Q, Li X, Liang Z, et al. Ginsenoside (20S)-protopanaxatriol induces non-protective autophagy and apoptosis by inhibiting Akt/mTOR signaling pathway in triple-negative breast cancer cells. Biochem Biophys Res Commun. 2021;583:184–91.

    Article  PubMed  CAS  Google Scholar 

  35. Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81–90.

    Article  PubMed  CAS  Google Scholar 

  36. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–98.

    Article  PubMed  CAS  Google Scholar 

  37. Sokol KH, Lee CJ, Rogers TJ, Waldhart A, Ellis AE, Madireddy S, et al. Lipid availability influences ferroptosis sensitivity in cancer cells by regulating polyunsaturated fatty acid trafficking. Cell Chem Biol. 2025;32:408–22.e6.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang HL, Hu BX, Li ZL, Du T, Shan JL, Ye ZP, et al. PKCbetaII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat Cell Biol. 2022;24:88–98.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou B, Jiang ZH, Dai MR, Ai YI, Xiao L, Zhong CQ, et al. Full-length GSDME mediates pyroptosis independent from cleavage. Nat Cell Biol. 2024;26:1545–57.

    Article  PubMed  CAS  Google Scholar 

  40. Qiu B, Zandkarimi F, Bezjian CT, Reznik E, Soni RK, Gu W, et al. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell. 2024;187:1177–90.e18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Xing R, Gao J, Cui Q, Wang Q. Strategies to improve the antitumor effect of immunotherapy for hepatocellular carcinoma. Front Immunol. 2021;12:783236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kong FH, Ye QF, Miao XY, Liu X, Huang SQ, Xiong L, et al. Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma. Theranostics. 2021;11:5464–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2021;7:6.

    Article  PubMed  Google Scholar 

  44. Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer. 2021;21:541–57.

    Article  PubMed  CAS  Google Scholar 

  45. Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19:151–72.

    Article  PubMed  CAS  Google Scholar 

  46. Ilyas SI, Affo S, Goyal L, Lamarca A, Sapisochin G, Yang JD, et al. Cholangiocarcinoma - novel biological insights and therapeutic strategies. Nat Rev Clin Oncol. 2023;20:470–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bitar R, Salem R, Finn R, Greten TF, Goldberg SN, Chapiro J. Interventional oncology meets immuno-oncology: combination therapies for hepatocellular carcinoma. Radiology. 2024;313:e232875.

    Article  PubMed  Google Scholar 

  48. Hu K, Li K, Lv J, Feng J, Chen J, Wu H, et al. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest. 2020;130:1752–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82173831), the Natural Science Foundation of China for Innovation Research Group (No. 81821005), the Shanghai Municipal Science and Technology Major Project, Foundation of Shanghai Science and Technology Committee (No. 21DZ2291100), Shandong Laboratory Program (No. SYS202205), “Personalized Medicines-Molecular Signature-based Drug Discovery and Development”, Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA12050102) and Key R&D Program of Shandong Province (2024CXPT029). We thank Dr. Ao Huang (Zhongshan Hospital, Fudan University) for kindly providing tumor samples. We are grateful to Dr. Chang-rong Ge (Karolinska Institute, Stockholm, Sweden) for his generous assistance in manuscript preparation and amendment.

Author information

Authors and Affiliations

Authors

Contributions

FYL and AJS designed the study and prepared the manuscript. FYL and YJY performed the experiments and analyzed the experimental data. XLW provided bioinformatic supports. YH cultured and amplified PDX-derived primary tumor cells. LC, NLZ and JL performed metabolomic and lipidomic studies and analyzed data. AH provided tumor samples. XPOY and MMZ provided technical and material support. AJS, MYG, and JL supervised the study. All authors have read and approved the article.

Corresponding authors

Correspondence to Jia Liu, Mei-yu Geng or Ai-jun Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Fy., Yang, Yj., Wang, Xl. et al. Ginsenoside (20)S-APPT induces ferroptosis in hepatocellular carcinoma and cholangiocarcinoma by targeting FSP1. Acta Pharmacol Sin 46, 3273–3290 (2025). https://doi.org/10.1038/s41401-025-01589-5

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01589-5

Search

Quick links