Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Programmed sequential nanostructural conversion at nano-bio interface for synergistic cancer phototheranostics

Abstract

Prodrugs usually convert into active compounds within cells via endogenous or external stimuli to improve the diagnostic accuracy and therapeutic efficacy, but this singular release profile often fails to meet the multifunctional needs of cancer therapeutics. In this study we proposed a strategy of “nanostructural conversion at nano-bio interface” and constructed a small-molecule nanoprodrug (APO-S-Cy7-TCF) for multifunctional anti-tumor phototheranostics. Upon exposure to redox biomolecules (ROS/GSH) in tumor microenvironment, the pristine nanostructure of APO-S-Cy7-TCF disassembled, releasing Cy7-TCF-OH and APO that interacted with heat shock proteins to initiate apoptosis. Cy7-TCF-OH could then re-assemble into smaller nanosaucers with enhanced photothermal properties and self-augmented ROS-generating capacity, enabling synergistic phototherapy for tumor ablation. In particular, Cy7-TCF-OH nanosaucers were long retained in residual tumors and could further interact with albumin to form smaller Cy7-TCF-OH@albumin nanocomposites that time-dependently activated near-infrared fluorescence for prognostic assessment. Using these biomolecule-derived elements to program supramolecular sequential structural conversions at nano-bio interface, our study establishes a new way for small-molecule-based multifunctional phototheranostic platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Self-assembly of APO-S-Cy7-TCF in aqueous solution.
Fig. 3: The structural conversion of APO-S-Cy7-TCF SM-NPs.
Fig. 4: Photothermal therapeutic performance of APO-S-Cy7-TCF SM-NPs in cells.
Fig. 5: Fluorescence imaging and metabolism of APO-S-Cy7-TCF SM-NPs in vivo, using APO/Cy7-TCF-OH in Pluronic F127 as controls.
Fig. 6: APO-S-Cy7-TCF SM-NPs-mediated low-temperature PTT in vivo.
Fig. 7: Biosafety of APO-S-Cy7-TCF SM-NPs-mediated low-temperature PTT in vivo.

Similar content being viewed by others

References

  1. Li H, Wang Y, Tang Q, Yin D, Tang C, He E, et al. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater. 2021;129:57–72.

    Article  PubMed  CAS  Google Scholar 

  2. Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17:657–74.

    Article  PubMed  Google Scholar 

  3. Bai G, Yuan P, Cai B, Qiu X, Jin R, Liu S, et al. Stimuli-responsive scaffold for breast cancer treatment combining accurate photothermal therapy and adipose tissue regeneration. Adv Funct Mater. 2019;29:1904401.

    Article  Google Scholar 

  4. Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci USA. 2019;116:18590–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ma G, Liu Z, Zhu C, Chen H, Kwok RTK, Zhang P, et al. H2O2-responsive NIR-II AIE nanobomb for carbon monoxide boosting low-temperature photothermal therapy. Angew Chem Int Ed. 2022;61:e202207213.

    Article  CAS  Google Scholar 

  6. Yi X, Duan Q-Y, Wu F-G. Low-temperature photothermal therapy: strategies and applications. Research. 2021;2021:9816594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhao R, Zhu Y, Feng L, Liu B, Hu Y, Zhu H, et al. Architecture of vanadium-based MXene dysregulating tumor redox homeostasis for amplified nanozyme catalytic/photothermal therapy. Adv Mater. 2023;36:2307115.

    Article  Google Scholar 

  8. Li Y, Zhang Y, Dong Y, Akakuru OU, Yao X, Yi J, et al. Ablation of gap junction protein improves the efficiency of nanozyme-mediated catalytic/starvation/mild-temperature photothermal therapy. Adv Mater. 2023;35:2210464.

    Article  CAS  Google Scholar 

  9. Dong S, Dong Y, Zhao Z, Liu J, Liu S, Feng L, et al. “Electron transport chain interference” strategy of amplified mild-photothermal therapy and defect-engineered multi-enzymatic activities for synergistic tumor-personalized suppression. J Am Chem Soc. 2023;145:9488–507.

    Article  PubMed  CAS  Google Scholar 

  10. Yang Y, Zhu W, Dong Z, Chao Y, Xu L, Chen M, et al. 1D Coordination polymer nanofibers for low-temperature photothermal therapy. Adv Mater. 2017;29:1703588.

    Article  Google Scholar 

  11. Zhou Z, Yan Y, Hu K, Zou Y, Li Y, Ma R, et al. Autophagy inhibition enabled efficient photothermal therapy at a mild temperature. Biomaterials. 2017;141:116–24.

    Article  PubMed  CAS  Google Scholar 

  12. Wu J, Niu S, Bremner DH, Nie W, Fu Z, Li D, et al. A Tumor microenvironment-responsive biodegradable mesoporous nanosystem for anti-inflammation and cancer theranostics. Adv Health Mater. 2020;9:1901307.

    Article  CAS  Google Scholar 

  13. Li W, Peng J, Tan L, Wu J, Shi K, Qu Y, et al. Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified docetaxel/IR820 co-loaded micelles. Biomaterials. 2016;106:119–33.

    Article  PubMed  CAS  Google Scholar 

  14. Chao S, Shen Z, Pei Y, Lv Y, Chen X, Ren J, et al. Pillar[5]arene-based supramolecular photosensitizer for enhanced hypoxic-tumor therapeutic effectiveness. Chem Commun. 2021;57:7625–8.

    Article  CAS  Google Scholar 

  15. Jin W, Chen Z, Wang Y, Li J, Li J, Pei Y, et al. Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chin Chem Lett. 2024;35:109328.

  16. Li J, Lv X, Li J, Jin W, Chen Z, Wen Y, et al. A supramolecular near-infrared nanophotosensitizer from host-guest complex of lactose-capped pillar[5]arene with aza-BODIPY derivative for tumor eradication. Org Chem Front. 2023;10:1927–35.

    Article  CAS  Google Scholar 

  17. Shu X, Chen Y, Yan P, Xiang Y, Shi Q-Y, Yin T, et al. Biomimetic nanoparticles for effective mild temperature photothermal therapy and multimodal imaging. J Control Release. 2022;347:270–81.

    Article  PubMed  CAS  Google Scholar 

  18. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1:10–29.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xiang J, Liu X, Yuan G, Zhang R, Zhou Q, Xie T, et al. Nanomedicine from amphiphilizedprodrugs: Concept and clinical translation. Adv Drug Deliv Rev. 2021;179:114027.

    Article  PubMed  CAS  Google Scholar 

  20. Ma Y, Mou Q, Yan D, Zhu X. Engineering small molecule nanodrugs to overcome barriers for cancer therapy. View. 2020;1:20200062.

    Article  Google Scholar 

  21. Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater. 2021;6:766–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fu S, Li G, Zang W, Zhou X, Shi K, Zhai Y. Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy. Acta Pharm Sin B. 2022;12:92–106.

    Article  PubMed  Google Scholar 

  23. Dong X, Brahma RK, Fang C, Yao SQ. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci. 2022;13:4239–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhang Y, Cui H, Zhang R, Zhang H, Huang W. Nanoparticulation of prodrug into medicines for cancer therapy. Adv Sci. 2021;8:2101454.

    Article  CAS  Google Scholar 

  25. Li G, Sun B, Li Y, Luo C, He Z, Sun J. Small-molecule prodrug nanoassemblies: An emerging nanoplatform for anticancer drug delivery. Small. 2021;17:2101460.

    Article  CAS  Google Scholar 

  26. Walther R, Rautio J, Zelikin AN. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv Drug Deliv Rev. 2017;118:65–77.

    Article  PubMed  CAS  Google Scholar 

  27. Lepeltier E, Bourgaux C, Couvreur P. Nanoprecipitation and the “Ouzo effect”: Application to drug delivery devices. Adv Drug Deliv Rev. 2014;71:86–97.

    Article  PubMed  CAS  Google Scholar 

  28. Wang D, Liu B, Ma Y, Wu C, Mou Q, Deng H, et al. A molecular recognition approach to synthesize nucleoside analogue based multifunctional nanoparticles for targeted cancer therapy. J Am Chem Soc. 2017;139:14021–4.

    Article  PubMed  CAS  Google Scholar 

  29. Huang P, Wang D, Su Y, Huang W, Zhou Y, Cui D, et al. Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug–drug conjugate for cancer therapy. J Am Chem Soc. 2014;136:11748–56.

    Article  PubMed  CAS  Google Scholar 

  30. Liang M, Mu X, Li Y, Tan Y, Hao X, Tang Y, et al. Heptamethine cyanine-based nanotheranostics with catalase-like activity for synergistic phototherapy of cancer. Adv Funct Mater. 2023;33:2302112.

    Article  CAS  Google Scholar 

  31. Feng G, Zhang G-Q, Ding D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem Soc Rev. 2020;49:8179–234.

    Article  PubMed  CAS  Google Scholar 

  32. Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 2019;48:2053–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang Y, Zhu W, Du W, Liu X, Zhang X, Dong H, et al. Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging. Angew Chem Int Ed. 2018;57:3963–7.

    Article  CAS  Google Scholar 

  34. Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev. 2018;47:2280–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ko SK, Kim J, Na DC, Park S, Park SH, Hyun JY, et al. A small molecule inhibitor of ATPase activity of HSP70 induces apoptosis and has antitumor activities. Chem Biol. 2015;22:391–403.

    Article  PubMed  CAS  Google Scholar 

  36. Cho HJ, Gee HY, Baek K-H, Ko S-K, Park J-M, Lee H, et al. A small molecule that binds to an ATPase domain of Hsc70 promotes membrane trafficking of mutant cystic fibrosis transmembrane conductance regulator. J Am Chem Soc. 2011;133:20267–76.

    Article  PubMed  CAS  Google Scholar 

  37. Williams DR, Ko S-K, Park S, Lee M-R, Shin I. An apoptosis-inducing small molecule that binds to heat shock protein 70. Angew Chem Int Ed. 2008;47:7466–9.

    Article  CAS  Google Scholar 

  38. Chakrabarti S, Michor F. Pharmacokinetics and drug interactions determine optimum combination strategies in computational models of cancer evolution. Cancer Res. 2017;77:3908–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Nezhadi S, Dorkoosh FA. Co-delivery systems: hope for clinical application? Drug Deliv Transl Res. 2022;12:1339–54.

    Article  PubMed  Google Scholar 

  40. Mu X, Wu F, Tang Y, Wang R, Li Y, Li K, et al. Boost photothermal theranostics via self-assembly-induced crystallization (SAIC). Aggregate. 2022;3:e170.

    Article  CAS  Google Scholar 

  41. Mu X, Lu Y, Wu F, Wei Y, Ma H, Zhao Y, et al. Supramolecular nanodiscs self-assembled from non-ionic heptamethine cyanine for iImaging-guided cancer photothermal therapy. Adv Mater. 2020;32:1906711.

    Article  CAS  Google Scholar 

  42. Mu X, Feng W, Li C, Li K, Li Y, Jing X, et al. Lighting up self-quenching nanoaggregates with protein corona for simultaneous intraoperative imaging and photothermal theranostics of metastatic cancer. Anal Chem. 2022;94:9775–84.

    Article  PubMed  CAS  Google Scholar 

  43. Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, et al. Photothermal nanomaterials: A powerful light-to-heat converter. Chem Rev. 2023;123:6891–952.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mu X, Huang Z, Feng W, Zhai M, Wang Y, Zhou D, et al. Zwitterionic rhodamine-CPT prodrug nanoparticles with GSH/H2O2 responsiveness for cancer theranostics. Theranostics. 2023;13:267–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chu B, Qu Y, He X, Hao Y, Yang C, Yang Y, et al. ROS-responsive camptothecin prodrug nanoparticles for on-demand drug release and combination of chemotherapy and photodynamic therapy. Adv Funct Mater. 2020;30:2005918.

    Article  CAS  Google Scholar 

  46. Wu F, Lu Y, Mu X, Chen Z, Liu S, Zhou X, et al. Intriguing H-aggregates of heptamethine cyanine for imaging-guided photothermal cancer therapy. ACS Appl Mater Interfaces. 2020;12:32388–96.

    Article  PubMed  CAS  Google Scholar 

  47. Desai N, Trieu V, Damascelli B, Soon-Shiong P. SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl Oncol. 2009;2:59–64.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X, et al. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021;277:121110.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by National Natural Science Foundation of China (22071128), Shandong Provincial Natural Science Foundation (ZR2020ZD31, ZR2023QB077), and Qingdao Postdoctoral Foundation (QDBSH20230102053).

Author information

Authors and Affiliations

Authors

Contributions

XFZ, SS, and RW conceived and designed the study. SS, RW, and XLEM acquired and analyzed data. WBF and HK collected and analyzed cellular and animal data. YJL and MG interpreted the data. SS, RW and XFZ wrote the paper. HRS interpreted the data and supervised the project. YXL and XFZ acquired funding and supervised the project.

Corresponding authors

Correspondence to Ying-xi Lu, Hui-rui Sun or Xian-feng Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Wang, R., Mu, Xle. et al. Programmed sequential nanostructural conversion at nano-bio interface for synergistic cancer phototheranostics. Acta Pharmacol Sin 46, 3343–3354 (2025). https://doi.org/10.1038/s41401-025-01609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01609-4

Keywords

Search

Quick links