Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PHB2 protects against pressure overload-induced myocardial remodeling in mice via stabilizing TOMM40 and regulating mitochondrial morphofunctional homeostasis

Abstract

Myocardial remodeling is critical pathological processes in various cardiovascular diseases, where redox imbalance and mitochondrial bioenergetic perturbations emerge as key determinants. Prohibitin 2 (PHB2), which resides in the mitochondrial inner membrane, serves as a critical regulator of mitochondrial homeostasis. In this study we investigated the protective role of PHB2 in transverse aortic constriction (TAC)-induced cardiac remodeling with a particular focus on its ability to safeguard the heart by improving mitochondrial function and alleviating oxidative stress. We revealed that PHB2 expression was significantly decreased in the heart of TAC mice and in Ang II (1 μM)-treated cardiomyocytes. Cardiac-specific PHB2 overexpression mitigated TAC-induced cardiac remodeling, improving cardiac function and attenuating hypertrophy. Additionally, PHB2 overexpression effectively suppressed oxidative stress in the hearts of TAC mice, while improving mitochondrial morphology and the integrity of inner membrane structure. Furthermore, PHB2 overexpression restored mitochondrial function in Ang II-treated cardiomyocytes evidenced by elevated ATP levels and enhanced oxidative phosphorylation capacity. IP-MS analysis revealed that PHB2 directly interacted with Transporter of Outer Mitochondrial Membrane 40 (TOMM40) to regulate mitochondrial function. Importantly, silencing TOMM40 abolished the protective effects of PHB2. We demonstrated that PHB2 preserves TOMM40 protein levels predominantly through inhibition of ubiquitin-dependent proteasomal degradation. Collectively, we discover a new function of PHB2 in safeguarding mitochondrial morphofunctional homeostasis in response to pathological stress through facilitating TOMM40 stabilization, suggesting PHB2 as a promising therapeutic target for potential interventions in heart diseases.

Schematic illustration of PHB2’s potential protective mechanism against cardiac hypertrophy. PHB2 protects against pressure overload-induced cardiac hypertrophy through preserving TOMM40 protein to maintain mitochondrial energetic homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PHB2 expression is downregulated in both DCM and experimental hypertrophic models.
Fig. 2: Overexpression of PHB2 alleviated cardiomyocyte hypertrophy in vitro and cardiac remodeling in vivo.
Fig. 3: PHB2 silencing aggravated Ang II-induced cardiomyocyte hypertrophy in vitro.
Fig. 4: PHB2 overexpression alleviated oxidative stress in mouse hearts and in isolated cardiomyocytes.
Fig. 5: PHB2 overexpression improved mitochondrial morphology and function.
Fig. 6: PHB2 interacted with TOMM40 to regulate its expression level.
Fig. 7: PHB2 overexpression alleviated mitochondrial dysfunction through TOMM40 in isolated cardiomyocytes.
Fig. 8: PHB2 regulated TOMM40 expression by facilitating its stabilization.

Similar content being viewed by others

References

  1. Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118:3272–87.

    Article  PubMed  Google Scholar 

  2. Ma ZG, Yuan YP, Fan D, Zhang X, Teng T, Song P, et al. IRX2 regulates angiotensin II-induced cardiac fibrosis by transcriptionally activating EGR1 in male mice. Nat Commun. 2023;14:4967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Mensah GA, Fuster V, Murray CJL, Roth GA. Global Burden of Cardiovascular Diseases and Risks Collaborators. Global burden of cardiovascular diseases and risks, 1990-2022. J Am Coll Cardiol. 2023;82:2350–473.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ranjbarvaziri S, Kooiker KB, Ellenberger M, Fajardo G, Zhao MM, Vander Roest AS, et al. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy. Circulation. 2021;144:1714–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med. 2019;51:1–13.

    Article  PubMed  CAS  Google Scholar 

  6. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac energy metabolism in heart failure. Circ Res. 2021;128:1487–513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhuang LF, Jia KN, Chen C, Li ZG, Zhao JX, Hu J, et al. DYRK1B-STAT3 drives cardiac hypertrophy and heart failure by impairing mitochondrial bioenergetics. Circulation. 2022;145:829–46.

    Article  PubMed  CAS  Google Scholar 

  8. Ren J, Pulakat L, Whaley-Connell A, Sowers JR. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl). 2010;88:993–1001.

    Article  PubMed  CAS  Google Scholar 

  9. Bugger H, Schwarzer M, Chen D, Schrepper A, Amorim PA, Schoepe M, et al. Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res. 2010;85:376–84.

    Article  PubMed  CAS  Google Scholar 

  10. Wu J, Lu J, Huang JY, You JY, Ding ZW, Ma LL, et al. Variations in energy metabolism precede alterations in cardiac structure and function in hypertrophic preconditioning. Front Cardiovasc Med. 2020;7:602100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yang D, Liu HQ, Liu FY, Guo Z, An P, Wang MY, et al. Mitochondria in pathological cardiac hypertrophy research and therapy. Front Cardiovasc Med. 2021;8:822969.

    Article  PubMed  CAS  Google Scholar 

  12. Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 2024;98:1323–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Moris D, Spartalis M, Tzatzaki E, Spartalis E, Karachaliou GS, Triantafyllis AS, et al. The role of reactive oxygen species in myocardial redox signaling and regulation. Ann Transl Med. 2017;5:324.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pham L, Arroum T, Wan J, Pavelich L, Bell J, Morse PT, et al. Regulation of mitochondrial oxidative phosphorylation through tight control of cytochrome c oxidase in health and disease - implications for ischemia/reperfusion injury, inflammatory diseases, diabetes, and cancer. Redox Biol. 2024;78:103426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Heine KB, Parry HA, Hood WR. How does density of the inner mitochondrial membrane influence mitochondrial performance? Am J Physiol Regul Integr Comp Physiol. 2023;324:R242–R248.

    Article  PubMed  CAS  Google Scholar 

  16. Chapa-Dubocq XR, Rodríguez-Graciani KM, Escobales N, Javadov S. Mitochondrial volume regulation and swelling mechanisms in cardiomyocytes. Antioxidants. 2023;12:1517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wei YJ, Chiang WC, Sumpter R, Mishra P, Levine B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell. 2017;168:224–238.e10.

    Article  PubMed  CAS  Google Scholar 

  18. Zheng XH, Liu K, Xie QQ, Xin HK, Chen W, Lin SY, et al. PHB2 alleviates neurotoxicity of prion peptide PrP106-126 via PINK1/Parkin-dependent mitophagy. Int J Mol Sci. 2023;24:15919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Signorile A, Sgaramella G, Bellomo F, De Rasmo D. Prohibitins: a critical role in mitochondrial functions and implication in diseases. Cells. 2019;8:71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hernando-Rodríguez B, Artal-Sanz M. Mitochondrial quality control mechanisms and the PHB (prohibitin) complex. Cells. 2018;7:238.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Winge DR, Tzagoloff A. Assembly of the mitochondrial respiratory chain. Preface. Biochim Biophys Acta. 2009;1793:1.

    Article  PubMed  CAS  Google Scholar 

  22. Jian CS, Xu FL, Hou TT, Sun T, Li JH, Cheng HP, et al. Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes. J Cell Sci. 2017;130:2620–30.

    Article  PubMed  CAS  Google Scholar 

  23. Anderson CJ, Kahl A, Fruitman H, Qian LP, Zhou P, Manfredi G, et al. Prohibitin levels regulate OMA1 activity and turnover in neurons. Cell Death Differ. 2020;27:1896–906.

    Article  PubMed  CAS  Google Scholar 

  24. Li LZ, Martin-Levilain J, Jiménez-Sánchez C, Karaca M, Foti M, Martinou JC, et al. In vivo stabilization of OPA1 in hepatocytes potentiates mitochondrial respiration and gluconeogenesis in a prohibitin-dependent way. J Biol Chem. 2019;294:12581–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wu DC, Jian CS, Peng Q, Hou TT, Wu KL, Shang BZ, et al. Prohibitin 2 deficiency impairs cardiac fatty acid oxidation and causes heart failure. Cell Death Dis. 2020;11:181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang N, Zhou ZY, Meng YY, Liao HH, Mou SQ, Lin Z, et al. HINT2 protects against pressure overload-induced cardiac remodelling through mitochondrial pathways. J Cell Mol Med. 2024;28:e18276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ji TX, Zhang P, Zhang XJ, Zhao YC, Deng KQ, Jiang X, et al. The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling. Nat Commun. 2016;7:11267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Li D, Guo YY, Cen XF, Qiu HL, Chen S, Zeng XF, et al. Lupeol protects against cardiac hypertrophy via TLR4-PI3K-Akt-NF-κB pathways. Acta Pharmacol Sin. 2022;43:1989–2002.

    Article  PubMed  CAS  Google Scholar 

  29. Xie SY, Liu SQ, Zhang T, Shi WK, Xing Y, Fang WX, et al. USP28 serves as a key suppressor of mitochondrial morphofunctional defects and cardiac dysfunction in the diabetic heart. Circulation. 2024;149:684–706.

    Article  PubMed  CAS  Google Scholar 

  30. Ago T, Liu T, Zhai PY, Chen W, Li H, Molkentin JD, et al. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell. 2008;133:978–93.

    Article  PubMed  CAS  Google Scholar 

  31. Wang XD, Zhang GY, Dasgupta S, Niewold EL, Li C, Li QF, et al. ATF4 protects the heart from failure by antagonizing oxidative stress. Circ Res. 2022;131:91–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res. 2015;116:531–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol. 2023;20:812–29.

    Article  PubMed  Google Scholar 

  34. Bertero E, Maack C. Metabolic remodelling in heart failure. Nat Rev Cardiol. 2018;15:457–70.

    Article  PubMed  CAS  Google Scholar 

  35. Ma YL, Kong CY, Guo Z, Wang MY, Wang P, Liu FY, et al. Semaglutide ameliorates cardiac remodeling in male mice by optimizing energy substrate utilization through the Creb5/NR4a1 axis. Nat Commun. 2024;15:4757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Löwer B, Wunderlich FT, et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008;22:476–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yang MJ, Abudureyimu M, Wang X, Zhou Y, Zhang YM, Ren J. PHB2 ameliorates doxorubicin-induced cardiomyopathy through interaction with NDUFV2 and restoration of mitochondrial complex I function. Redox Biol. 2023;65:102812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yan CJ, Gong LL, Chen L, Xu M, Abou-Hamdan H, Tang ML, et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy. 2020;16:419–34.

    Article  PubMed  CAS  Google Scholar 

  39. Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab. 2016;27:105–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China, including the Regional Innovation and Development Joint Fund (Grant No. U22A20269), the Key Program (Grant No. 81530012), and the Young Scientists Fund (Grant No. 82300270). Additional support was provided by the National Key R&D Program of China (Grant No. 2018YFC1311300).

Author information

Authors and Affiliations

Authors

Contributions

DL, JHL and QZT designed research; DL, JHL, YYG, FXX, WYL performed the experiments; DL, YYG, YJC and MZ analyzed data; DL and JHL wrote the paper.

Corresponding author

Correspondence to Qi-zhu Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Li, Jh., Guo, Yy. et al. PHB2 protects against pressure overload-induced myocardial remodeling in mice via stabilizing TOMM40 and regulating mitochondrial morphofunctional homeostasis. Acta Pharmacol Sin 46, 3217–3229 (2025). https://doi.org/10.1038/s41401-025-01613-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01613-8

Keywords

Search

Quick links