Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of AKOS, a Chikungunya virus inhibitor, as a USP14 inhibitor for colorectal cancer treatment

Abstract

Ubiquitin-specific protease 14 (USP14) is a crucial modulator of proteasomal function and cellular proteostasis, which plays an important role in the development and progression of various cancers including colorectal cancer (CRC). In this study we screened 670 covalent compounds using the in vitro Ub-AMC hydrolysis assay, and identified AKOS, initially a Chikungunya virus inhibitor, as a novel small-molecule inhibitor of USP14. We showed that AKOS inhibiting USP14 deubiquitinase activity with an IC50 value of 0.98 μM. AKOS directly bound to USP14, covalently modifying the active-site cysteine residue (Cys114), thereby effectively inhibiting its deubiquitinase activity. We demonstrated that inhibition of USP14 by AKOS might destabilize MEF2D, a critical substrate, resulting in downregulation of the expression and translation of ECM-related transcription factors such as ITGB4. AKOS exhibited potent anti-cancer effects: the USP14 inhibitor significantly inhibited the proliferation and metastasis of CRC cells in vitro with IC50 values of 9.88 and 16.57 μM, respectively, in SW620 cells and HCT116 cells. Intratumoral injection of AKOS (15, 30 mg/kg, every 5 days) effectively suppressed the tumor growth in HCT116 xenograft mouse models in vivo. Collectively, we demonstrate that AKOS is a promising chemical probe for targeting USP14 in CRC, offering a novel strategy for disrupting the malignant progression of CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: USP14 knockdown inhibits proliferation and metastasis in CRC cells.
Fig. 2: Identification of AKOS that inhibits the deubiquitinase activity of USP14 using the Ub-AMC hydrolysis assay.
Fig. 3: Direct binding of AKOS to USP14 induces covalent modification of the active-site cysteine residue (Cys114).
Fig. 4: AKOS inhibits CRC cell growth and metastasis by targeting USP14.
Fig. 5: AKOS inhibits CRC malignant progression by modulating the ECM-receptor interaction pathway.
Fig. 6: AKOS inhibits CRC growth in vivo.

Similar content being viewed by others

References

  1. Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 2017;14:417–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Narayanan S, Cai C, Assaraf YG, Guo H, Cui Q, Wei L, et al. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat. 2020;48:100663.

    Article  PubMed  Google Scholar 

  3. Curran MP, Mckeage K. Bortezomib: a review of its use in patients with multiple myeloma. Drugs. 2009;69:859–88.

    Article  PubMed  CAS  Google Scholar 

  4. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–53.

    Article  PubMed  CAS  Google Scholar 

  5. Cockram PE, Kist M, Prakash S, Chen S, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021;28:591–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov. 2018;17:57–78.

    Article  PubMed  CAS  Google Scholar 

  7. Dewson G, Eichhorn PJA, Komander D. Deubiquitinases in cancer. Nat Rev Cancer. 2023;23:842–62.

    Article  PubMed  CAS  Google Scholar 

  8. Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, et al. Deubiquitylating enzymes in cancer and immunity. Adv Sci (Weinh). 2023;10:e2303807.

    Article  PubMed  Google Scholar 

  9. Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325:669–85.

    Article  PubMed  CAS  Google Scholar 

  10. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–80.

    Article  PubMed  Google Scholar 

  11. Haller DG, Tabernero J, Maroun J, de Braud F, Price T, Van Cutsem E, et al. Capecitabine plus oxaliplatin compared with fluorouracil and folinic acid as adjuvant therapy for stage III colon cancer. J Clin Oncol. 2011;29:1465–71.

    Article  PubMed  CAS  Google Scholar 

  12. Adenis A, de la Fouchardiere C, Paule B, Burtin P, Tougeron D, Wallet J, et al. Survival, safety, and prognostic factors for outcome with regorafenib in patients with metastatic colorectal cancer refractory to standard therapies: results from a multicenter study (REBECCA) nested within a compassionate use program. BMC Cancer. 2016;16:412.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Watanabe J, Muro K, Shitara K, Yamazaki K, Shiozawa M, Ohori H, et al. Panitumumab vs bevacizumab added to standard first-line chemotherapy and overall survival among patients with RAS wild-type, left-sided metastatic colorectal cancer: a randomized clinical trial. JAMA. 2023;329:1271–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16:361–75.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhou Y, Wu J, Fu X, Du W, Zhou L, Meng X, et al. OTUB1 promotes metastasis and serves as a marker of poor prognosis in colorectal cancer. Mol Cancer. 2014;13:258.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhong J, Zhao M, Ma Y, Luo Q, Liu J, Wang J, et al. UCHL1 acts as a colorectal cancer oncogene via activation of the beta-catenin/TCF pathway through its deubiquitinating activity. Int J Mol Med. 2012;30:430–6.

    Article  PubMed  CAS  Google Scholar 

  17. Trulsson F, Akimov V, Robu M, van Overbeek N, Berrocal DAP, Shah RG, et al. Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates. Nat Commun. 2022;13:2736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. He L, Yu C, Qin S, Zheng E, Liu X, Liu Y, et al. The proteasome component PSMD14 drives myelomagenesis through a histone deubiquitinase activity. Mol Cell. 2023;83:4000–16.

    Article  PubMed  CAS  Google Scholar 

  19. Wang F, Ning S, Yu B, Wang Y. USP14: structure, function, and target inhibition. Front Pharmacol. 2021;12:801328.

    Article  PubMed  CAS  Google Scholar 

  20. Wang D, Ma H, Zhao Y, Zhao J. Ubiquitin-specific protease 14 is a new therapeutic target for the treatment of diseases. J Cell Physiol. 2021;236:3396–405.

    Article  PubMed  CAS  Google Scholar 

  21. Liu B, Chen J, Zhang S. Emerging role of ubiquitin-specific protease 14 in oncogenesis and development of tumor: therapeutic implication. Life Sci. 2019;239:116875.

    Article  PubMed  CAS  Google Scholar 

  22. Shi D, Wu X, Jian Y, Wang J, Huang C, Mo S, et al. USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer. Nat Commun. 2022;13:5644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Du X, Ke S, Liang X, Gao J, Xie X, Qi L, et al. USP14 promotes colorectal cancer progression by targeting JNK for stabilization. Cell Death Dis. 2023;14:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lu B, Sun Y, Chen B, Yang B, He Q, Li J, et al. ZDHHC20-driven s-palmitoylation of CD80 is required for its costimulatory function. Acta Pharmacol Sin. 2024;45:1214–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yuan M, Chen X, Sun Y, Jiang L, Xia Z, Ye K, et al. ZDHHC12-mediated claudin-3 s-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B. 2020;10:1426–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Xiang J, Zhang N, Du A, Li J, Luo M, Wang Y, et al. A ubiquitin-dependent switch on MEF2d senses pro-metastatic niche signals to facilitate intrahepatic metastasis of liver cancer. Adv Sci (Weinh). 2023;10:e2305550.

    Article  PubMed  Google Scholar 

  27. Zhao C, Gong J, Bai Y, Yin T, Zhou M, Pan S, et al. A self-amplifying USP14-TAZ loop drives the progression and liver metastasis of pancreatic ductal adenocarcinoma. Cell Death Differ. 2023;30:1–15.

    Article  PubMed  Google Scholar 

  28. Xia X, Huang C, Liao Y, Liu Y, He J, Guo Z, et al. Inhibition of USP14 enhances the sensitivity of breast cancer to enzalutamide. J Exp Clin Cancer Res. 2019;38:220.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee B, Lee MJ, Park S, Oh D, Elsasser S, Chen P, et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 2010;467:179–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tian Z, D’Arcy P, Wang X, Ray A, Tai Y, Hu Y, et al. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood. 2014;123:706–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Xu D, Shan B, Lee B, Zhu K, Zhang T, Sun H, et al. Phosphorylation and activation of ubiquitin-specific protease-14 by akt regulates the ubiquitin-proteasome system. Elife. 2015;4:e10510.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yuan T, Zeng C, Liu J, Zhao C, Ge F, Li Y, et al. Josephin domain containing 2 (JOSD2) promotes lung cancer by inhibiting LKB1 (liver kinase b1) activity. Signal Transduct Target Ther. 2024;9:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jadav SS, Sinha BN, Hilgenfeld R, Pastorino B, de Lamballerie X, Jayaprakash V. Thiazolidone derivatives as inhibitors of chikungunya virus. Eur J Med Chem. 2015;89:172–8.

    Article  PubMed  CAS  Google Scholar 

  34. Huynh K, Partch CL. Analysis of protein stability and ligand interactions by thermal shift assay. Curr Protoc Protein Sci. 2015;79:28–9.

    Article  PubMed Central  Google Scholar 

  35. Abo M, Li C, Weerapana E. Isotopically-labeled iodoacetamide-alkyne probes for quantitative cysteine-reactivity profiling. Mol Pharmacol. 2018;15:743–9.

    Article  CAS  Google Scholar 

  36. Xu D, Shan B, Sun H, Xiao J, Zhu K, Xie X, et al. USP14 regulates autophagy by suppressing k63 ubiquitination of beclin 1. Genes Dev. 2016;30:1718–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lv C, Wang S, Lin L, Wang C, Zeng K, Meng Y, et al. USP14 maintains HIF1-alpha stabilization via its deubiquitination activity in hepatocellular carcinoma. Cell Death Dis. 2021;12:803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kim HT, Goldberg AL. UBL domain of usp14 and other proteins stimulates proteasome activities and protein degradation in cells. Proc Natl Acad Sci USA. 2018;115:e11642–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chakraborty J, von Stockum S, Marchesan E, Caicci F, Ferrari V, et al. USP14 inhibition corrects an in vivo model of impaired mitophagy. EMBO Mol Med. 2018;10:e9014.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mialki RK, Zhao J, Wei J, Mallampalli DF, Zhao Y. Overexpression of USP14 protease reduces I-κB protein levels and increases cytokine release in lung epithelial cells. J Biol Chem. 2013;288:15437–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wei J, Dong S, Bowser RK, Khoo A, Zhang L, et al. Regulation of the ubiquitylation and deubiquitylation of CREB-binding protein modulates histone acetylation and lung inflammation. Sci Signal. 2017;10:eaak9660.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu B, Jiang S, Li M, Xiong X, Zhu M, et al. Proteome-wide analysis of USP14 substrates revealed its role in hepatosteatosis via stabilization of FASN. Nat Commun. 2018;9:4770.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Boselli M, Lee BH, Robert J, Prado MA, Min SW, et al. An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J Biol Chem. 2017;292:19209–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447.

    Article  PubMed  CAS  Google Scholar 

  45. Ding W, Wang J, Wu J, Liu A, Jiang L, Zhang H, et al. Targeting proteasomal deubiquitinases USP14 and UCHL5 with b-AP15 reduces 5-fluorouracil resistance in colorectal cancer cells. Acta Pharmacol Sin. 2023;44:2537–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang X, Fang Y, Liang W, Wong CC, Qin H, Gao Y, et al. Fusobacterium nucleatum facilitates anti-PD-1 therapy in microsatellite stable colorectal cancer. Cancer Cell. 2024;42:1729–46.

    Article  PubMed  CAS  Google Scholar 

  47. Liu C, Liu R, Wang B, Lian J, Yao Y, Sun H, et al. Blocking IL-17a enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer. J Immunother Cancer. 2021;9:e001895.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sun L, Liu R, Wu Z, Liu Z, Wan AH, Yan S, et al. Galectin-7 induction by EHMT2 inhibition enhances immunity in microsatellite stability colorectal cancer. Gastroenterology. 2024;166:466–82.

    Article  PubMed  CAS  Google Scholar 

  49. Liu D, Li M, Zhao Z, Zhou L, Zhi F, Guo Z, et al. Targeting the TRIM14/USP14 axis enhances immunotherapy efficacy by inducing autophagic degradation of PD-l1. Cancer Res. 2024;84:2806–19.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by National Natural Science Foundation of China (No. U21A20420 to Bo Yang), Youth Fund of the National Natural Science Foundation of China (No. 82304514 to Li Jiang), Zhejiang Provincial Natural Science Foundation of China (No. LQ23H310004 to Li Jiang), Zhejiang Provincial Natural Science Foundation of China (No. LQ22H310006 to Meng Yuan).

Author information

Authors and Affiliations

Contributions

BL, QJH, JC, LJ, and BY conceived and designed the study. BL, YYS, JHZ, DNC, YG, YLC, CHP, ZYC, and MY performed the experiments. BL and YYS collected and assembled the data. BL and JC wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Ji Cao, Li Jiang or Bo Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Sun, Yy., Zhou, Jh. et al. Identification of AKOS, a Chikungunya virus inhibitor, as a USP14 inhibitor for colorectal cancer treatment. Acta Pharmacol Sin 46, 3302–3313 (2025). https://doi.org/10.1038/s41401-025-01616-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01616-5

Keywords

Search

Quick links