Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tigecycline suppresses colon cancer stem cells and impairs tumor engraftment by targeting SNAI1-regulated epithelial-mesenchymal transition

Abstract

Cancer stem cells (CSCs) play a key role in the progression of colorectal cancer (CRC). The high heterogeneity of CSCs has hindered the clinical application of CSC-targeting therapies. Tetracyclines are drugs with therapeutic potentials beyond their antibiotic activity. We previously demonstrated the efficacy of tigecycline, a third-generation tetracycline, against a model of colitis-associated colorectal cancer, primarily focusing on its immunomodulatory role with a preliminary assessment of its impact on stemness. In this study we characterize the effects of tigecycline on colon CSCs in vitro and in a CRC xenograft model, with special attention on the signaling pathways involved and the modulation of the gut microbiota. We generated secondary colonospheres from two colon tumor cell lines HCT116 and CMT93, and evaluated the effect of tigecycline on CSCs properties. We showed that tigecycline (25, 50 μM) effectively reduced colon CD133+CD44+LGR5+ALDH+ subpopulations and their viability, self-renewal and migratory capacity. Moreover, tigecycline treatment hindered epithelial-mesenchymal transition (EMT) process through targeting SNAI1 and β-catenin, resulting in an upregulation of epithelial markers (E-cadherin) and a downregulation of pluripotency and mesenchymal ones (Vimentin, N-cadherin, SOX2, NANOG, MIR155, MIR146). This effect was confirmed in two independent CRC-xenograft murine models in which tigecycline administration led to a reduction in tumor volume. Finally, CRC samples were taken from HCT116 xenograft model mice for analysis of CSCs-related signaling pathways and stools were collected for gut microbiome metagenomic analysis. We found that the antibiotic modulated gut dysbiosis by increasing the abundance of beneficial bacterial species such as Parabacteroides sp., which were involved in metabolic pathways that hindered SNAI1-Wnt-β-catenin signaling. These results reinforce the new role of tigecycline in the therapy of CRC and demonstrate for the first time the effect of tigecycline on colon CSCs and their malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of tigecycline on EMT-related genes and miRNAs.
Fig. 2: Impact of tigecycline on tumor colonospheres.
Fig. 3: Tigecycline induces apoptosis in colonospheres.
Fig. 4: Colon CSCs population is reduced by tigecycline in secondary colonospheres derived from HCT116 and CMT93 cell lines.
Fig. 5: Tigecycline reduces the levels of pluripotency and EMT-related genes in secondary colonospheres by hindering SNAI1.
Fig. 6: Tumorigenic capacity of HCT116 xenograft after being treated with tigecycline 50 μM ex vivo.
Fig. 7: Effect of oral administration of tigecycline on HCT116 xenograft mice.
Fig. 8: Oral treatment with tigecycline modulates microbiota composition in tumor xenograft mice.
Fig. 9: Impact of tigecycline on microbiota profile in tumor xenograft mice.
Fig. 10: Main metabolic pathways associated with the gut microbial composition control and tigecycline-treated mice.
Fig. 11: Effect of tigecycline on the metagenomic profile.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67:93–9.

    PubMed  Google Scholar 

  3. Canellas-Socias A, Cortina C, Hernando-Momblona X, Palomo-Ponce S, Mulholland EJ, Turon G, et al. Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells. Nature. 2022;611:603–13.

    PubMed  PubMed Central  Google Scholar 

  4. Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23:675–99.

    PubMed  Google Scholar 

  5. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–11.

    PubMed  Google Scholar 

  6. Stemmer V, de Craene B, Berx G, Behrens J. Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene. 2008;27:5075–80.

    PubMed  Google Scholar 

  7. Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923.

    PubMed  PubMed Central  Google Scholar 

  8. Kreso A, O’Brien CA, van Galen P, Gan OI, Notta F, Brown AM, et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science. 2013;339:543–8.

    PubMed  Google Scholar 

  9. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA. 2004;101:14228–33.

    PubMed  PubMed Central  Google Scholar 

  10. Fujino S, Miyoshi N, Ito A, Hayashi R, Yasui M, Matsuda C, et al. Metastases and treatment-resistant lineages in patient-derived cancer cells of colorectal cancer. Commun Biol. 2023;6:1191.

    PubMed  PubMed Central  Google Scholar 

  11. Zhong D, Jiang H, Zhou C, Ahmed A, Li H, Wei X, et al. The microbiota regulates hematopoietic stem and progenitor cell development by mediating inflammatory signals in the niche. Cell Rep. 2023;42:112116.

    PubMed  Google Scholar 

  12. Liu X, Nagy P, Bonfini A, Houtz P, Bing XL, Yang X, et al. Microbes affect gut epithelial cell composition through immune-dependent regulation of intestinal stem cell differentiation. Cell Rep. 2022;38:110572.

    PubMed  PubMed Central  Google Scholar 

  13. Marzano M, Fosso B, Piancone E, Defazio G, Pesole G, De Robertis M. Stem cell impairment at the host-microbiota interface in colorectal cancer. Cancers. 2021;13:996.

    PubMed  PubMed Central  Google Scholar 

  14. Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358:1443–8.

    PubMed  PubMed Central  Google Scholar 

  15. Zhou Z, Chen J, Yao H, Hu H. Fusobacterium and colorectal cancer. Front Oncol. 2018;8:371.

    PubMed  PubMed Central  Google Scholar 

  16. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.

    PubMed  PubMed Central  Google Scholar 

  17. Fong W, Li Q, Yu J. Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene. 2020;39:4925–43.

    PubMed  PubMed Central  Google Scholar 

  18. Ruiz-Malagon AJ, Hidalgo-Garcia L, Rodriguez-Sojo MJ, Molina-Tijeras JA, Garcia F, Diez-Echave P, et al. Tigecycline reduces tumorigenesis in colorectal cancer via inhibition of cell proliferation and modulation of immune response. Biomed Pharmacother. 2023;163:114760.

    PubMed  Google Scholar 

  19. Jimenez G, Hackenberg M, Catalina P, Boulaiz H, Grinan-Lison C, Garcia MA, et al. Mesenchymal stem cell’s secretome promotes selective enrichment of cancer stem-like cells with specific cytogenetic profile. Cancer Lett. 2018;429:78–88.

    PubMed  Google Scholar 

  20. Cruz-Lozano M, Gonzalez-Gonzalez A, Marchal JA, Munoz-Muela E, Molina MP, Cara FE, et al. Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/beta-catenin and TGFbeta signaling pathways. Eur J Nutr. 2019;58:3207–19.

    PubMed  Google Scholar 

  21. Griñán-Lisón C, Olivares-Urbano MA, Jiménez G, López-Ruiz E, Del Val C, Morata-Tarifa C, et al. miRNAs as radio-response biomarkers for breast cancer stem cells. Mol Oncol. 2020;14:556–70.

    PubMed  PubMed Central  Google Scholar 

  22. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    PubMed  PubMed Central  Google Scholar 

  23. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.

    PubMed  Google Scholar 

  24. Glockner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017;261:169–76.

    PubMed  Google Scholar 

  25. Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, Midford PE, et al. The MetaCyc database of metabolic pathways and enzymes–a 2019 update. Nucleic Acids Res. 2020;48:D445–D53.

    PubMed  Google Scholar 

  26. Pena C, Garcia JM, Silva J, Garcia V, Rodriguez R, Alonso I, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet. 2005;14:3361–70.

    PubMed  Google Scholar 

  27. He X, Chen Z, Jia M, Zhao X. Downregulated E-cadherin expression indicates worse prognosis in Asian patients with colorectal cancer: evidence from meta-analysis. PLoS One. 2013;8:e70858.

    PubMed  PubMed Central  Google Scholar 

  28. Hanušová V, Krbal L, Soukup J, John S, Rudolf E. Role of E-cadherin in metastatic colorectal cancer treatment. Ann Oncol. 2017;28:vii28.

    Google Scholar 

  29. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3:362–74.

    PubMed  Google Scholar 

  30. Kudo-Saito C, Yura M, Yamamoto R, Kawakami Y. Induction of immunoregulatory CD271+ cells by metastatic tumor cells that express human endogenous retrovirus H. Cancer Res. 2014;74:1361–70.

    PubMed  Google Scholar 

  31. Sundararajan V, Tan M, Tan TZ, Ye J, Thiery JP, Huang RY. SNAI1 recruits HDAC1 to suppress SNAI2 transcription during epithelial to mesenchymal transition. Sci Rep. 2019;9:8295.

    PubMed  PubMed Central  Google Scholar 

  32. Huang TY, Chang TC, Chin YT, Pan YS, Chang WJ, Liu FC, et al. NDAT targets PI3K-mediated PD-L1 upregulation to reduce proliferation in gefitinib-resistant colorectal cancer. Cells. 2020;9:1830.

    PubMed  PubMed Central  Google Scholar 

  33. Gali-Muhtasib H, Ocker M, Kuester D, Krueger S, El-Hajj Z, Diestel A, et al. Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J Cell Mol Med. 2008;12:330–42.

    PubMed  Google Scholar 

  34. Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer. JAMA. 2021;325:669–85.

    PubMed  Google Scholar 

  35. Chen L, Yang F, Chen S, Tai J. Mechanisms on chemotherapy resistance of colorectal cancer stem cells and research progress of reverse transformation: a mini-review. Front Med. 2022;9:995882.

    Google Scholar 

  36. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25:20.

    PubMed  PubMed Central  Google Scholar 

  37. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.

    PubMed  PubMed Central  Google Scholar 

  38. Fessler E, Medema JP. Colorectal cancer subtypes: developmental origin and microenvironmental regulation. Trends Cancer. 2016;2:505–18.

    PubMed  Google Scholar 

  39. Peters NA, Constantinides A, Ubink I, van Kuik J, Bloemendal HJ, van Dodewaard JM, et al. Consensus molecular subtype 4 (CMS4)-targeted therapy in primary colon cancer: a proof-of-concept study. Front Oncol. 2022;12:969855.

    PubMed  PubMed Central  Google Scholar 

  40. Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF. Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA. 2010;107:3722–7.

    PubMed  PubMed Central  Google Scholar 

  41. Zhang L, Xu L, Zhang F, Vlashi E. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer. Cell Cycle. 2017;16:737–45.

    PubMed  Google Scholar 

  42. Liu H, Tao H, Wang H, Yang Y, Yang R, Dai X, et al. Doxycycline inhibits cancer stem cell-like properties via PAR1/FAK/PI3K/AKT pathway in pancreatic cancer. Front Oncol. 2021;10:619317.

    PubMed  PubMed Central  Google Scholar 

  43. Saikali Z, Singh G. Doxycycline and other tetracyclines in the treatment of bone metastasis. Anticancer Drugs. 2003;14:773–8.

    PubMed  Google Scholar 

  44. Du FY, Zhou QF, Sun WJ, Chen GL. Targeting cancer stem cells in drug discovery: current state and future perspectives. World J Stem Cells. 2019;11:398–420.

    PubMed  PubMed Central  Google Scholar 

  45. Sethy C, Kundu CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed Pharmacother. 2021;137:111285.

    PubMed  Google Scholar 

  46. Mukohyama J, Isobe T, Hu Q, Hayashi T, Watanabe T, Maeda M, et al. miR-221 targets QKI to enhance the tumorigenic capacity of human colorectal cancer stem cells. Cancer Res. 2019;79:5151–8.

    PubMed  PubMed Central  Google Scholar 

  47. Liu F, Kong X, Lv L, Gao J. MiR-155 targets TP53INP1 to regulate liver cancer stem cell acquisition and self-renewal. FEBS Lett. 2015;589:500–6.

    PubMed  Google Scholar 

  48. Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28:6773–84.

    PubMed  PubMed Central  Google Scholar 

  49. Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268–80.

    PubMed  Google Scholar 

  50. Rezaei R, Baghaei K, Amani D, Piccin A, Hashemi SM, Asadzadeh Aghdaei H, et al. Exosome-mediated delivery of functionally active miRNA-375-3p mimic regulate epithelial mesenchymal transition (EMT) of colon cancer cells. Life Sci. 2021;269:119035.

    PubMed  Google Scholar 

  51. Garrido-Mesa J, Algieri F, Rodriguez-Nogales A, Vezza T, Utrilla MP, Garcia F, et al. Immunomodulatory tetracyclines ameliorate DNBS-colitis: Impact on microRNA expression and microbiota composition. Biochem Pharmacol. 2018;155:524–36.

    PubMed  Google Scholar 

  52. Garrido-Mesa J, Rodriguez-Nogales A, Algieri F, Vezza T, Hidalgo-Garcia L, Garrido-Barros M, et al. Immunomodulatory tetracyclines shape the intestinal inflammatory response inducing mucosal healing and resolution. Br J Pharmacol. 2018;175:4353–70.

    PubMed  PubMed Central  Google Scholar 

  53. Yang R, Yi L, Dong Z, Ouyang Q, Zhou J, Pang Y, et al. Tigecycline inhibits glioma growth by regulating miRNA-199b-5p-HES1-AKT pathway. Mol Cancer Ther. 2016;15:421–9.

    PubMed  Google Scholar 

  54. Al-Haidari AA, Syk I, Thorlacius H. MiR-155-5p positively regulates CCL17-induced colon cancer cell migration by targeting RhoA. Oncotarget. 2017;8:14887–96.

    PubMed  PubMed Central  Google Scholar 

  55. Gao Y, Liu Z, Ding Z, Hou S, Li J, Jiang K. MicroRNA-155 increases colon cancer chemoresistance to cisplatin by targeting forkhead box O3. Oncol Lett. 2018;15:4781–8.

    PubMed  PubMed Central  Google Scholar 

  56. Park JW, Kim Y, Lee SB, Oh CW, Lee EJ, Ko JY, et al. Autophagy inhibits cancer stemness in triple-negative breast cancer via miR-181a-mediated regulation of ATG5 and/or ATG2B. Mol Oncol. 2022;16:1857–75.

    PubMed  PubMed Central  Google Scholar 

  57. Zhang JX, Mai SJ, Huang XX, Wang FW, Liao YJ, Lin MC, et al. MiR-29c mediates epithelial-to-mesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of beta-catenin signaling. Ann Oncol. 2014;25:2196–204.

    PubMed  Google Scholar 

  58. Cristobal I, Madoz-Gurpide J, Manso R, Rojo F, Garcia-Foncillas J. MiR-29c downregulation contributes to metastatic progression in colorectal cancer. Ann Oncol. 2015;26:2199–200.

    PubMed  Google Scholar 

  59. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene. 2004;23:7274–82.

    PubMed  Google Scholar 

  60. Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, et al. Cancer stem cells in progression of colorectal cancer. Oncotarget. 2018;9:33403–15.

    PubMed  Google Scholar 

  61. Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. Cancer Drug Resist. 2022;5:850–72.

    PubMed  PubMed Central  Google Scholar 

  62. Scatena C, Roncella M, Di Paolo A, Aretini P, Menicagli M, Fanelli G, et al. Doxycycline, an inhibitor of mitochondrial biogenesis, effectively reduces cancer stem cells (CSCs) in early breast cancer patients: a clinical pilot study. Front Oncol. 2018;8:452.

    PubMed  PubMed Central  Google Scholar 

  63. Qin Y, Zhang Q, Lee S, Zhong WL, Liu YR, Liu HJ, et al. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells. Oncotarget. 2015;6:40667–79.

    PubMed  PubMed Central  Google Scholar 

  64. Villarejo A, Cortés-Cabrera Á, Molina-Ortíz P, Portillo F, Cano A. Differential role of Snail1 and Snail2 zinc fingers in E-cadherin repression and epithelial to mesenchymal transition. J Biol Chem. 2014;289:930–41.

    PubMed  Google Scholar 

  65. Loh C-Y, Chai J, Tang T, Wong W, Sethi G, Shanmugam M, et al. The E-Cadherin and N-Cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. 2019;8:1118.

    PubMed  PubMed Central  Google Scholar 

  66. Freihen V, Ronsch K, Mastroianni J, Frey P, Rose K, Boerries M, et al. SNAIL1 employs beta-Catenin-LEF1 complexes to control colorectal cancer cell invasion and proliferation. Int J Cancer. 2020;146:2229–42.

    PubMed  Google Scholar 

  67. Zucchini-Pascal N, Peyre L, Rahmani R. Crosstalk between beta-catenin and snail in the induction of epithelial to mesenchymal transition in hepatocarcinoma: role of the ERK1/2 pathway. Int J Mol Sci. 2013;14:20768–92.

    PubMed  PubMed Central  Google Scholar 

  68. de Sousa e Melo F, Vermeulen L. Wnt signaling in cancer stem cell biology. Cancers. 2016;8:60.

    PubMed  PubMed Central  Google Scholar 

  69. Su YJ, Chang YW, Lin WH, Liang CL, Lee JL. An aberrant nuclear localization of E-cadherin is a potent inhibitor of Wnt/beta-catenin-elicited promotion of the cancer stem cell phenotype. Oncogenesis. 2015;4:e157.

    PubMed  PubMed Central  Google Scholar 

  70. Junttila MR, Mao W, Wang X, Wang BE, Pham T, Flygare J, et al. Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med. 2015;7:314ra186.

    PubMed  Google Scholar 

  71. Kemper K, Prasetyanti PR, De Lau W, Rodermond H, Clevers H, Medema JP. Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells. 2012;30:2378–86.

    PubMed  Google Scholar 

  72. Li D, Yang Z-K, Bu J-Y, Xu C-Y, Sun HUI, Tang J-B, et al. OCT4B modulates OCT4A expression as ceRNA in tumor cells. Oncol Rep. 2015;33:2622–30.

    PubMed  Google Scholar 

  73. Zhu Y, Huang S, Chen S, Chen J, Wang Z, Wang Y, et al. SOX2 promotes chemoresistance, cancer stem cells properties, and epithelial–mesenchymal transition by β-catenin and Beclin1/autophagy signaling in colorectal cancer. Cell Death Dis. 2021;12:449.

    PubMed  PubMed Central  Google Scholar 

  74. Fang CY, Chen JS, Hsu BM, Hussain B, Rathod J, Lee KH. Colorectal cancer stage-specific fecal bacterial community fingerprinting of the Taiwanese population and underpinning of potential taxonomic biomarkers. Microorganisms. 2021;9:1548.

    PubMed  PubMed Central  Google Scholar 

  75. Khattab RH, Abo-Hammam RH, Salah M, Hanora AM, Shabayek S, Zakeer S. Multi-omics analysis of fecal samples in colorectal cancer Egyptians patients: a pilot study. BMC Microbiol. 2023;23:238.

    PubMed  PubMed Central  Google Scholar 

  76. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature. 2020;580:269–73.

    PubMed  PubMed Central  Google Scholar 

  77. Zhou T, Wu J, Tang H, Liu D, Jeon BH, Jin W, et al. Enhancing tumor-specific recognition of programmable synthetic bacterial consortium for precision therapy of colorectal cancer. NPJ Biofilms Microbiomes. 2024;10:6.

    PubMed  PubMed Central  Google Scholar 

  78. Chiang CJ, Huang PH. Metabolic engineering of probiotic Escherichia coli for cytolytic therapy of tumors. Sci Rep. 2021;11:5853.

    PubMed  PubMed Central  Google Scholar 

  79. Ryan RM, Green J, Williams PJ, Tazzyman S, Hunt S, Harmey JH, et al. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 2009;16:329–39.

    PubMed  Google Scholar 

  80. Hou X, Zhang P, Du H, Chu W, Sun R, Qin S, et al. Akkermansia muciniphila potentiates the antitumor efficacy of FOLFOX in colon cancer. Front Pharmacol. 2021;12:725583.

    PubMed  PubMed Central  Google Scholar 

  81. Koh GY, Kane AV, Wu X, Crott JW. Parabacteroides distasonis attenuates tumorigenesis, modulates inflammatory markers and promotes intestinal barrier integrity in azoxymethane-treated A/J mice. Carcinogenesis. 2020;41:909–17.

    PubMed  Google Scholar 

  82. Ji Y, Tao T, Zhang J, Su A, Zhao L, Chen H, et al. Comparison of effects on colitis-associated tumorigenesis and gut microbiota in mice between Ophiocordyceps sinensis and Cordyceps militaris. Phytomedicine. 2021;90:153653.

    PubMed  Google Scholar 

  83. Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565:600–5.

    PubMed  Google Scholar 

  84. Avram-Hananel L, Stock J, Parlesak A, Bode C, Schwartz B. E durans strain M4-5 isolated from human colonic flora attenuates intestinal inflammation. Dis Colon Rectum. 2010;53:1676–86.

    PubMed  Google Scholar 

  85. Kanda T, Nishida A, Ohno M, Imaeda H, Shimada T, Inatomi O, et al. Enterococcus durans TN-3 induces regulatory T cells and suppresses the development of dextran sulfate sodium (DSS)-induced experimental colitis. PLoS One. 2016;11:e0159705.

    PubMed  PubMed Central  Google Scholar 

  86. Zhang L, Liu J, Deng M, Chen X, Jiang L, Zhang J, et al. Enterococcus faecalis promotes the progression of colorectal cancer via its metabolite: biliverdin. J Transl Med. 2023;21:72.

    PubMed  PubMed Central  Google Scholar 

  87. Carasi P, Racedo SM, Jacquot C, Elie AM, Serradell ML, Urdaci MC. Enterococcus durans EP1 a promising anti-inflammatory probiotic able to stimulate siga and to increase Faecalibacterium prausnitzii abundance. Front Immunol. 2017;8:88.

    PubMed  PubMed Central  Google Scholar 

  88. Dikeocha IJ, Al-Kabsi AM, Chiu HT, Alshawsh MA. Faecalibacterium prausnitzii ameliorates colorectal tumorigenesis and suppresses proliferation of HCT116 colorectal cancer cells. Biomedicines. 2022;10:1128.

    PubMed  PubMed Central  Google Scholar 

  89. Daniel SG, Ball CL, Besselsen DG, Doetschman T, Hurwitz BL. Functional changes in the gut microbiome contribute to transforming growth factor beta-deficient colon cancer. mSystems. 2017;2:e00065–17.

    PubMed  PubMed Central  Google Scholar 

  90. Gubernatorova EO, Gorshkova EA, Bondareva MA, Podosokorskaya OA, Sheynova AD, Yakovleva AS, et al. Akkermansia muciniphila - friend or foe in colorectal cancer? Front Immunol. 2023;14:1303795.

    PubMed  PubMed Central  Google Scholar 

  91. Teng H, Wang Y, Sui X, Fan J, Li S, Lei X, et al. Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer. Cancer Cell. 2023;41:124–38.e6.

    PubMed  Google Scholar 

  92. Zheng K, Yu J, Chen Z, Zhou R, Lin C, Zhang Y, et al. Ethanol promotes alcohol-related colorectal cancer metastasis via the TGF-beta/RUNX3/Snail axis by inducing TGF-beta1 upregulation and RUNX3 cytoplasmic mislocalization. EBioMedicine. 2019;50:224–37.

    PubMed  PubMed Central  Google Scholar 

  93. Devall M, Plummer SJ, Bryant J, Jennelle LT, Eaton S, Dampier CH, et al. Ethanol exposure drives colon location specific cell composition changes in a normal colon crypt 3D organoid model. Sci Rep. 2021;11:432.

    PubMed  PubMed Central  Google Scholar 

  94. Kodama M, Oshikawa K, Shimizu H, Yoshioka S, Takahashi M, Izumi Y, et al. A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer. Nat Commun. 2020;11:1320.

    PubMed  PubMed Central  Google Scholar 

  95. Gmeiner WH, Hellmann GM, Shen P. Tissue-dependent and -independent gene expression changes in metastatic colon cancer. Oncol Rep. 2008;19:245–51.

    PubMed  Google Scholar 

Download references

Acknowledgements

The manuscript has been funded by the Junta de Andalucia (CTS164) (Spain) and Fondo Europeo de Desarrollo Regional (FEDER), from the European Union, through the CIBER-EHD and the research grants PY20-01157, B-CTS-664-UGR20, P18-RT-4930, predoctoral grant IFI21/00030 to MJRS, postdoctoral grant CD23/00117 to AJRM, postdoctoral grant CD23/00234 to JGG, postdoctoral grant CD23/00089 to AHP, and POSTDOC_21_638 to CGL. This paper was also supported by Instituto de Salud Carlos III (ISCIII) (Spain) through the projects PI19/01058, PI20/01447 and PI22/0163 and cofounded by the European Union and by the Chair “Doctors Galera-Requena in cancer stem cell research” (CMCCTS963 to JAM).

Author information

Authors and Affiliations

Authors

Contributions

AJRM, MJRS, ARN and JG conceived and designed the study. AJRM, MJRS, TV, AHP and CGL performed experiments. JGG, AJRM, FG, ARN and JGG performed bioinformatic analysis. AJRM, MJRS, MERC, ERC, JAM, ARN and JG analyzed the results and wrote the manuscript with comments from all authors. ARN, MERC and JG supervised the entire project.

Corresponding authors

Correspondence to María Elena Rodríguez-Cabezas, Alba Rodríguez-Nogales or Julio Gálvez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Malagón, A.J., Rodríguez-Sojo, M.J., García-García, J. et al. Tigecycline suppresses colon cancer stem cells and impairs tumor engraftment by targeting SNAI1-regulated epithelial-mesenchymal transition. Acta Pharmacol Sin 47, 222–241 (2026). https://doi.org/10.1038/s41401-025-01629-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01629-0

Keywords

Search

Quick links