Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TNFSF15 alleviates myeloid-derived suppressor cell-mediated cancer immunosuppression in mice

Abstract

Myeloid-derived suppressor cells (MDSCs) are a category of immature myeloid cells that have an important function in suppressing immune responses in a variety of pathological settings. Thus, MDSCs are the subject of intensive studies regarding their recruitment, expulsion, deactivation, and maturation promotion. Tumor necrosis factor superfamily member 15 (TNFSF15) is produced largely by vascular endothelial cells in mature blood vessels with expression also observed in tumor-associated macrophages (TAMs) and dendritic cells (DCs) within the tumor stroma. In addition to inhibiting the proliferation of vascular endothelial cells and the differentiation of bone marrow-derived endothelial cell progenitors, TNFSF15 is able to promote the maturation of DC, as well as to modulate the polarization of naive M2-macrophages into M1-macrophages capable of eliminating cancer cells, and activate T-cell. In this study, we investigated whether a recombinant TNFSF15 results in a substantial reduction of MDSC accumulation in Lewis lung cancer (LLC) tumor-bearing mice. LLC allograft model mice were administered recombinant TNFSF15 (5 mg·kg−1·d−1, i.p.) for 7 consecutive days. The tumor, bone marrow and spleen were retrieved on Day 8 and analyzed using flow cytometry or immunofluorescence staining. We showed that TNFSF15 treatment significantly inhibited the tumor growth, and caused a substantial reduction of MDSC accumulation in the tumors. The proportions of MDSC in the bone marrows and the spleens were also reduced. The diminished MDSC was mainly the monocyte-like MDSC (M-MDSC) subtype. Additionally, the reduction in M-MDSC population was accompanied by an increase of the proportions of macrophages and DCs in the tumors. We demonstrated that TNFSF15 promoted M-MDSC differentiation by activating the JAK1/STAT3 signaling pathway. Moreover, the treatment gave rise to a markedly escalated accumulation of cytotoxic T cells in the tumors, attributing to tumor growth inhibition. Our results support the view that TNFSF15-driven differentiation of M-MDSC into DCs and macrophages, and the subsequent activation of T cells, may contribute partially to reinstitution of immunity in the tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TNFSF15 inhibits the accumulation of MDSCs in tumor-bearing mice.
Fig. 2: TNFSF15 inhibits the accumulation of M-MDSCs and the function of MDSC in tumor-bearing mice.
Fig. 3: TNFSF15 regulates MDSCs and macrophage/DC balance in the tumor microenvironment.
Fig. 4: TNFSF15 restores MDSCs-mediated T cell suppression.
Fig. 5: TNFSF15 regulates the differentiation of MDSC in vitro.
Fig. 6: TNFSF15 promotes MDSC differentiation through JAK1/STAT3 pathway.
Fig. 7: Schematic representation of TNFSF15-regulated MDSC differentiation.

Similar content being viewed by others

References

  1. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21:485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120:16–25.

    Article  CAS  PubMed  Google Scholar 

  3. Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther. 2021;6:362.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mao Y, Eissler N, Blanc KL, Johnsen JI, Kogner P, Kiessling R. Targeting suppressive myeloid cells potentiates checkpoint inhibitors to control spontaneous neuroblastoma. Clin Cancer Res. 2016;22:3849–59.

    Article  CAS  PubMed  Google Scholar 

  5. Alizadeh D, Trad M, Hanke NT, Larmonier CB, Janikashvili N, Bonnotte B, et al. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res. 2014;74:104–18.

    Article  CAS  PubMed  Google Scholar 

  6. Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ, et al. Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res. 2010;16:1812–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 2003;63:4441–9.

    CAS  PubMed  Google Scholar 

  8. Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer. 2013;13:739–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol. 2020;17:1–12.

    Article  CAS  PubMed  Google Scholar 

  11. Ben-Meir K, Twaik N, Baniyash M. Plasticity and biological diversity of myeloid derived suppressor cells. Curr Opin Immunol. 2018;51:154–61.

    Article  CAS  PubMed  Google Scholar 

  12. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferrer G, Jung B, Chiu PY, Aslam R, Palacios F, Mazzarello AN, et al. Myeloid-derived suppressor cell subtypes differentially influence T-cell function, T-helper subset differentiation, and clinical course in CLL. Leukemia. 2021;35:3163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol. 2018;19:108–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holtzhausen A, Harris W, Ubil E, Hunter DM, Zhao J, Zhang Y, et al. TAM family receptor kinase inhibition reverses MDSC-mediated suppression and augments anti-PD-1 therapy in melanoma. Cancer Immunol Res. 2019;7:1672–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar V, Cheng P, Condamine T, Mony S, Languino LR, McCaffrey JC, et al. CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity. 2016;44:303–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bitsch R, Kurzay A, Özbay Kurt F, De La Torre C, Lasser S, Lepper A, et al. STAT3 inhibitor napabucasin abrogates MDSC immunosuppressive capacity and prolongs survival of melanoma-bearing mice. J Immunother Cancer. 2022;10:e004384.

  18. Zhai Y, Ni J, Jiang GW, Lu J, Xing L, Lincoln C, et al. VEGI, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo. FASEB J. 1999;13:181–9.

    Article  CAS  PubMed  Google Scholar 

  19. Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 2002;16:479–92.

    Article  CAS  PubMed  Google Scholar 

  20. Xu WD, Li R, Huang AF. Role of TL1A in inflammatory autoimmune diseases: a comprehensive review. Front Immunol. 2022;13:891328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hedl M, Abraham C. A TNFSF15 disease-risk polymorphism increases pattern-recognition receptor-induced signaling through caspase-8-induced IL-1. Proc Natl Acad Sci USA. 2014;111:13451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Al-Lamki RS, Wang J, Pober JS, Bradley JR. Co-expression and functional interactions of death receptor 3 and E-selectin in clear cell renal cell carcinoma. Am J Pathol. 2022;192:722–36.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang M, Zhang W, Zhang R, Liu P, Ye Y, Yu W, et al. Cancer exosome-derived miR-9 and miR-181a promote the development of early-stage MDSCs via interfering with SOCS3 and PIAS3 respectively in breast cancer. Oncogene. 2020;39:4681–94.

    Article  CAS  PubMed  Google Scholar 

  24. Ma C, Huang J, Zheng Y, Na Y, Wei J, Shan J, et al. Anti-TL1A monoclonal antibody modulates the dysregulation of Th1/Th17 cells and attenuates granuloma formation in sarcoidosis by inhibiting the PI3K/AKT signaling pathway. Int Immunopharmacol. 2024;137:112360.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao CC, Han QJ, Ying HY, Gu XX, Yang N, Li LY, et al. TNFSF15 facilitates differentiation and polarization of macrophages toward M1 phenotype to inhibit tumor growth. Oncoimmunology. 2022;11:2032918.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sethi G, Sung B, Aggarwal BB. Therapeutic potential of VEGI/TL1A in autoimmunity and cancer. Adv Exp Med Biol. 2009;647:207–15.

    Article  CAS  PubMed  Google Scholar 

  27. Tian F, Liang PH, Li LY. Inhibition of endothelial progenitor cell differentiation by VEGI. Blood. 2009;113:5352–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang PH, Tian F, Lu Y, Duan B, Stolz DB, Li LY. Vascular endothelial growth inhibitor (VEGI; TNFSF15) inhibits bone marrow-derived endothelial progenitor cell incorporation into Lewis lung carcinoma tumors. Angiogenesis. 2011;14:61–8.

    Article  CAS  PubMed  Google Scholar 

  29. Tian F, Grimaldo S, Fujita M, Cutts J, Vujanovic NL, Li LY. The endothelial cell-produced antiangiogenic cytokine vascular endothelial growth inhibitor induces dendritic cell maturation. J Immunol. 2007;179:3742–51.

    Article  CAS  PubMed  Google Scholar 

  30. Qi JW, Qin TT, Xu LX, Zhang K, Yang GL, Li J, et al. TNFSF15 inhibits vasculogenesis by regulating relative levels of membrane-bound and soluble isoforms of VEGF receptor 1. Proc Natl Acad Sci USA. 2013;110:13863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hou W, Medynski D, Wu S, Lin X, Li LY. VEGI-192, a new isoform of TNFSF15, specifically eliminates tumor vascular endothelial cells and suppresses tumor growth. Clin Cancer Res. 2005;11:5595–602.

    Article  CAS  PubMed  Google Scholar 

  32. Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA, et al. Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol. 1998;161:5313–20.

    Article  CAS  PubMed  Google Scholar 

  33. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008;68:5439–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E, Baniyash M. Tumor necrosis factor-α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity. 2013;38:541–54.

    Article  CAS  PubMed  Google Scholar 

  36. Rodríguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev. 2008;222:180–91.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Awad M, Sen’kova A, Zenkova M, Markov O. The impact of cytokines and tumour-conditioned medium on the properties of murine in vitro generated myeloid-derived suppressor cells. Scand J Immunol. 2025;101:e70001.

    Article  CAS  PubMed  Google Scholar 

  38. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177:7303–11.

    Article  CAS  PubMed  Google Scholar 

  39. Li BH, Garstka MA, Li ZF. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol. 2020;117:201–15.

    Article  CAS  PubMed  Google Scholar 

  40. Bronte V, Pittet MJ. The spleen in local and systemic regulation of immunity. Immunity. 2013;39:806–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hou Y, Liang HL, Yu X, Liu Z, Cao X, Rao E, et al. Radiotherapy and immunotherapy converge on elimination of tumor-promoting erythroid progenitor cells through adaptive immunity. Sci Transl Med. 2021;13:eabb0130.

  42. Kaczanowska S, Beury DW, Gopalan V, Tycko AK, Qin H, Clements ME, et al. Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis. Cell. 2021;184:2033–52.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 2021;27:152–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu M, Wu C, Luo S, Hua Q, Chen HT, Weng Y, et al. PERK reprograms hematopoietic progenitor cells to direct tumor-promoting myelopoiesis in the spleen. J Exp Med. 2022;219:e20211498.

  45. Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, et al. Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 2010;70:99–108.

    Article  CAS  PubMed  Google Scholar 

  46. Huang J, Jochems C, Talaie T, Anderson A, Jales A, Tsang KY, et al. Elevated serum soluble CD40 ligand in cancer patients may play an immunosuppressive role. Blood. 2012;120:3030–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sinha P, Chornoguz O, Clements VK, Artemenko KA, Zubarev RA, Ostrand-Rosenberg S. Myeloid-derived suppressor cells express the death receptor Fas and apoptose in response to T cell-expressed FasL. Blood. 2011;117:5381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. He Z, Wang S, Wu J, Xie Y, Li B. Lower expression of TWEAK is associated with poor survival and dysregulate TIICs in lung adenocarcinoma. Dis markers. 2022;2022:8661423.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hoffmann SHL, Reck DI, Maurer A, Fehrenbacher B, Sceneay JE, Poxleitner M, et al. Visualization and quantification of in vivo homing kinetics of myeloid-derived suppressor cells in primary and metastatic cancer. Theranostics. 2019;9:5869–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trikha P, Carson WE 3rd. Signaling pathways involved in MDSC regulation. Biochim Biophys Acta. 2014;1846:55–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5:3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mahanti K, Saha J, Sarkar D, Pramanik A, Roy Chattopadhyay N, Bhattacharyya S. Alteration of functionality and differentiation directed by changing gene expression patterns in myeloid-derived suppressor cells (MDSCs) in tumor microenvironment and bone marrow through early to terminal phase of tumor progression. J Leukoc Biol. 2024;115:958–84.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao Y, Du J, Shen X. Targeting myeloid-derived suppressor cells in tumor immunotherapy: current, future and beyond. Front Immunol. 2023;14:1157537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by National Natural Science Foundation of China (82073064 and 81874167 to LYL; 82473963 to ZSZ), Haihe Laboratory of Cell Ecosystem Innovation Fund (22HHXBSS00020 to LYL), Ministry of Education 111 Project (B20016 to LYL), the Key Projects of Tianjin Science and Technology (24ZXZSSS00150 to ZSZ), and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) (116019-KJ01000601 to ZSZ).

Author information

Authors and Affiliations

Authors

Contributions

YPZ performed most of the cellular, biochemical protein purification, and animal experiments. JS and XYD contributed to the cellular and animal experiments. YPZ and JS analyzed data; XYC, YYW, QJH, and JYW contributed to data analysis and chart analysis production. YPZ and JYW wrote the original manuscript. LYL and ZSZ initiated the project, led the project team, designed the experiment plans, analyzed the results.

Corresponding authors

Correspondence to Jing-ying Wang, Lu-yuan Li or Zhi-song Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Yp., Sun, J., Cao, Xy. et al. TNFSF15 alleviates myeloid-derived suppressor cell-mediated cancer immunosuppression in mice. Acta Pharmacol Sin 47, 493–503 (2026). https://doi.org/10.1038/s41401-025-01663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41401-025-01663-y

Keywords

Search

Quick links