Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mup3 ameliorates the dysregulation of glucose and lipid metabolism in MAFLD

Abstract

Major urinary protein 3 (Mup3), belonging to the Mup family, is involved in metabolic regulation, but the exact regulatory pathways remain to be elucidated. In this study we investigated the function of Mup3 in regulating hepatic glucose and lipid metabolism. We established four mouse models of metabolic disorders, i.e. db/db and ob/ob obese mice, high-fat diet (HFD)-induced obese (DIO) mice and mice with methionine-choline-deficient (MCD) diet-induced metabolic-associated steatohepatitis (MASH). We found that the expression levels of Mup3 were significantly reduced in the livers of all the four model mice. Moreover, upregulation of Mup3 levels in the liver of HFD-induced obese mice and db/db mice via adeno-associated virus notably decreased blood glucose levels and hepatic triglyceride (TG) content, and improved glucose tolerance and insulin sensitivity. Conversely, Mup3 gene knockout exacerbated HFD-induced hyperglycemia and hepatic lipid accumulation and worsened glucose intolerance and insulin resistance (IR). Restoring the expression of Mup3 reversed these effects in the livers of Mup3-/-. By conducting RNA sequencing (RNA-seq) analysis we revealed that Mup3 primarily modulated gluconeogenesis and the PI3K/AKT signaling cascades. We demonstrated that Mup3 downregulated the genes associated with hepatic gluconeogenesis and lipid synthesis while attenuating hepatic inflammation. These results suggest that Mup3 plays a central role in regulating glucose and lipid balance, highlighting its significance as a prospective treatment target for metabolic disorders, including diabetes and metabolic dysfunction-associated fatty liver disease (MAFLD).

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Downregulation of Mup3 expression in metabolic disease models.
Fig. 2: Mup3 markedly suppresses gluconeogenesis in primary mouse hepatocytes.
Fig. 3: Mup3 overexpression alleviates HFD-induced hyperglycemia and insulin resistance.
Fig. 4: Mup3 overexpression ameliorates HFD-induced hepatic steatosis and inflammation.
Fig. 5: Mup3 is involved in multiple metabolic pathways in the livers of HFD-induced obese mice.
Fig. 6: Mup3 deficiency exacerbates HFD-induced metabolic disorders in mice.
Fig. 7: Mup3 knockout exacerbates HFD-induced hepatic steatosis and inflammation.
Fig. 8: Re-expression of Mup3 in the liver of Mup3-/- restores glycemic and lipid control in HFD-fed mice.

Similar content being viewed by others

References

  1. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American association for the study of liver diseases. Hepatology. 2018;67:328–57.

    Article  PubMed  Google Scholar 

  2. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American gastroenterological association, American association for the study of liver diseases, and American College of Gastroenterology. Gastroenterology. 2012;142:1592–609.

    Article  PubMed  Google Scholar 

  3. Woo Baidal JA, Lavine JE. The intersection of nonalcoholic fatty liver disease and obesity. Sci Transl Med. 2016;8:323rv1.

    Article  PubMed  Google Scholar 

  4. Samuel VT, Shulman GI. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 2018;27:22–41.

    Article  CAS  PubMed  Google Scholar 

  5. Golabi P, Paik JM, AlQahtani S, Younossi Y, Tuncer G, Younossi ZM. Burden of non-alcoholic fatty liver disease in Asia, the middle East and north Africa: data from global burden of disease 2009-2019. J Hepatol. 2021;75:795–809.

    Article  CAS  PubMed  Google Scholar 

  6. Andreasen CR, Andersen A, Vilsbøll T. The future of incretins in the treatment of obesity and non-alcoholic fatty liver disease. Diabetologia. 2023;66:1846–58.

    Article  CAS  PubMed  Google Scholar 

  7. Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52:1836–46.

    Article  CAS  PubMed  Google Scholar 

  8. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14:1483–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell. 2021;184:2537–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kasper P, Martin A, Lang S, Kütting F, Goeser T, Demir M, et al. NAFLD and cardiovascular diseases: a clinical review. Clin Res Cardiol J Ger Card Soc. 2021;110:921–37.

    Google Scholar 

  12. Mantovani A, Dalbeni A, Beatrice G, Cappelli D, Gomez-Peralta F. Non-alcoholic fatty liver disease and risk of macro- and microvascular complications in patients with type 2 diabetes. J Clin Med. 2022;11:968.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marušić M, Paić M, Knobloch M, Liberati Pršo AM. NAFLD, insulin resistance, and diabetes mellitus type 2. Can J Gastroenterol Hepatol. 2021;2021:6613827.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279:32345–53.

    Article  CAS  PubMed  Google Scholar 

  15. Greve S, Kuhn GA, Saenz-de-Juano MD, Ghosh A, von Meyenn F, Giller K. The major urinary protein gene cluster knockout mouse as a novel model for translational metabolism research. Sci Rep. 2022;12:13161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pallauf K, Günther I, Chin D, Rimbach G. In contrast to dietary restriction, application of resveratrol in mice does not alter mouse major urinary protein expression. Nutrients. 2020;12:815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou Y, Jiang L, Rui L. Identification of MUP1 as a regulator for glucose and lipid metabolism in mice. J Biol Chem. 2009;284:11152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao R, Wang H, Li T, Wang J, Ren Z, Cai N, et al. Secreted MUP1 that reduced under ER stress attenuates ER stress induced insulin resistance through suppressing protein synthesis in hepatocytes. Pharmacol Res. 2023;187:106585.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang H, Li C, Han L, Xiao Y, Bian J, Liu C, et al. MUP1 mediates urolithin A alleviation of chronic alcohol-related liver disease via gut-microbiota-liver axis. Gut Microbes. 2024;16:2367342.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Wu X, Xu M, Yue T, Ling P, Fang T, et al. Comparative proteomic pnalysis of liver tissues and serum in db/db mice. Int J Mol Sci. 2022;23:9687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Szoka PR, Gallagher JF, Held WA. In vitro synthesis and characterization of precursors to the mouse major urinary proteins. J Biol Chem. 1980;255:1367–73.

    Article  CAS  PubMed  Google Scholar 

  22. Dhahbi JM, Kim HJ, Mote PL, Beaver RJ, Spindler SR. Temporal linkage between the phenotypic and genomic responses to caloric restriction. Proc Natl Acad Sci USA. 2004;101:5524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Giller K, Huebbe P, Doering F, Pallauf K, Rimbach G. Major urinary protein 5, a scent communication protein, is regulated by dietary restriction and subsequent re-feeding in mice. Proc Biol Sci. 2013;280:20130101.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen CC, Lee TY, Kwok CF, Hsu YP, Shih KC, Lin YJ, et al. Major urinary protein 1 interacts with cannabinoid receptor type 1 in fatty acid-induced hepatic insulin resistance in a mouse hepatocyte model. Biochem Biophys Res Commun. 2015;460:1063–8.

    Article  CAS  PubMed  Google Scholar 

  25. Huang JF, Tsai PC, Yeh ML, Huang CF, Huang CI, Hsieh MH, et al. Risk stratification of non-alcoholic fatty liver disease across body mass index in a community basis. J Formos Med Assoc. 2020;119:89–96.

    Article  PubMed  Google Scholar 

  26. Yao Z, Gong Y, Chen W, Shao S, Song Y, Guo H, et al. Upregulation of WDR6 drives hepatic de novo lipogenesis in insulin resistance in mice. Nat Metab. 2023;5:1706–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meex RCR, Watt MJ. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol. 2017;13:509–20.

    Article  CAS  PubMed  Google Scholar 

  28. Lu M, Wan M, Leavens KF, Chu Q, Monks BR, Fernandez S, et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat Med. 2012;18:388–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong XC, Copps KD, Guo S, Li Y, Kollipara R, DePinho RA, et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 2008;8:65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev. 2017;49:197–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Watt MJ, Miotto PM, De Nardo W, Montgomery MK. The liver as an endocrine organ-linking NAFLD and insulin resistance. Endocr Rev. 2019;40:1367–93.

    Article  PubMed  Google Scholar 

  32. Xia J, Sellers LA, Oxley D, Smith T, Emson P, Keverne EB. Urinary pheromones promote ERK/Akt phosphorylation, regeneration and survival of vomeronasal (V2R) neurons. Eur J Neurosci. 2006;24:3333–42.

    Article  PubMed  Google Scholar 

  33. Gekle M. Renal tubule albumin transport. Annu Rev Physiol. 2005;67:573–94.

    Article  CAS  PubMed  Google Scholar 

  34. Hu J, Zhu XH, Zhang XJ, Wang PX, Zhang R, Zhang P, et al. Targeting TRAF3 signaling protects against hepatic ischemia/reperfusions injury. J Hepatol. 2016;64:146–59.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Zhang XJ, Li H. Targeting interferon regulatory factor for cardiometabolic diseases: opportunities and challenges. Curr Drug Targets. 2017;18:1754–78.

    Article  PubMed  Google Scholar 

  36. Chen Z, Yu Y, Cai J, Li H. Emerging molecular targets for treatment of nonalcoholic fatty liver disease. Trends Endocrinol Metab TEM. 2019;30:903–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82370878, 81870402, 82200975 and 82300659), Key Research and Development Program of Anhui Province (2022i01020023), Anhui Science Fund for Distinguished Young Scholars (2208085J45), Research Fund of Anhui Institute of Translational Medicine (2022zhyx-C12), and Natural Science Foundation of Anhui Province (2308085QH247).

Author information

Authors and Affiliations

Authors

Contributions

XMZ, JYG, and DW contributed equally to this work. HBZ, CBG, and LZ conceived and designed the experiments. XMZ, JYG, DW, LL, XW, XRX, and HG performed the laboratory experiments. HTH, XYW, and YXX completed the data analysis RNA sequencing. HBZ provided funding. XMZ and JYG drafted the original manuscript. All authors contributed to and have approved the final manuscript.

Corresponding authors

Correspondence to Lei Zhang, Chao-bing Gao or Hua-bing Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xm., Gao, Jy., Wang, D. et al. Mup3 ameliorates the dysregulation of glucose and lipid metabolism in MAFLD. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01668-7

Keywords

Search

Quick links