Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting virus-interacting host ion channels as a novel antiviral strategy

Abstract

Ion channels are transmembrane protein complexes that control ion transport across the membranes and play a pivotal role for maintaining cellular homeostasis as well as in virus–host interactions. As obligate parasites, viruses hijack the host’s ion channel network with spatiotemporal precision to drive their life cycle. In this review, we summarize the key function of ion channels in this dynamic interplay. We then delve into the ways by which different ion channel types facilitate discrete stages of viral infection, including entry, genome release, replication, assembly, and release. By examining dynamic changes in ion channel activity during infection, we reveal how viruses manipulate host ion channels to regulate their life cycle. Moreover, the clinical potential of targeting host ion channels as an innovative antiviral strategy is highlighted. The objective of this review is to comprehensively elucidate host ion channel-virus interactions, as well as the potential of existing ion channel modulators as antiviral drugs, laying the theoretical foundation for the development of novel antiviral therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Viruses exploit host ion channels to facilitate entry.
Fig. 2: Ion channel activity significantly affects viral replication and release.
Fig. 3: Host ion channel activity is suppressed during the viral life cycle.

Data availability

No data were used for the research described in the article.

References

  1. Tompa DR, Immanuel A, Srikanth S, Kadhirvel S. Trends and strategies to combat viral infections: a review on FDA approved antiviral drugs. Int J Biol Macromol. 2021;172:524–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn. 2024:1–20. https://doi.org/10.1080/07391102.2024.2411523.

  3. Wang J, Sun Y, Liu S. Emerging antiviral therapies and drugs for the treatment of influenza. Expert Opin Emerg Drugs. 2022;27:389–403.

    Article  PubMed  Google Scholar 

  4. Kondratskyi A, Kondratska K, Skryma R, Klionsky DJ, Prevarskaya N. Ion channels in the regulation of autophagy. Autophagy. 2018;14:3–21.

    Article  CAS  PubMed  Google Scholar 

  5. Morachevskaya EA, Sudarikova AV. Actin dynamics as critical ion channel regulator: ENaC and Piezo in focus. Am J Physiol Cell Physiol. 2021;320:C696–C702.

    Article  CAS  PubMed  Google Scholar 

  6. Donate-Macian P, Jungfleisch J, Perez-Vilaro G, Rubio-Moscardo F, Peralvarez-Marin A, Diez J, et al. The TRPV4 channel links calcium influx to DDX3X activity and viral infectivity. Nat Commun. 2018;9:2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hover S, Foster B, Barr JN, Mankouri J. Viral dependence on cellular ion channels - an emerging anti-viral target? J Gen Virol. 2017;98:345–51.

    Article  CAS  PubMed  Google Scholar 

  8. Shaw AB, Tse HN, Byford O, Plahe G, Moon-Walker A, Hover SE, et al. Cellular endosomal potassium ion flux regulates arenavirus uncoating during virus entry. mBio. 2024;15:e0168423.

    Article  PubMed  Google Scholar 

  9. Khan N, Lakpa KL, Halcrow PW, Afghah Z, Miller NM, Geiger JD, et al. BK channels regulate extracellular Tat-mediated HIV-1 LTR transactivation. Sci Rep. 2019;9:12285.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang S, Liu Y, Guo J, Wang P, Zhang L, Xiao G, et al. Screening of FDA-approved drugs for inhibitors of Japanese encephalitis virus infection. J Virol. 2017;91:e01055–17.

  11. Dregni AJ, McKay MJ, Surya W, Queralt-Martin M, Medeiros-Silva J, Wang HK, et al. The cytoplasmic domain of the SARS-CoV-2 envelope protein assembles into a beta-sheet bundle in lipid bilayers. J Mol Biol. 2023;435:167966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luganini A, Di Nardo G, Munaron L, Gilardi G, Fiorio Pla A, Gribaudo G. Human cytomegalovirus US21 protein is a viroporin that modulates calcium homeostasis and protects cells against apoptosis. Proc Natl Acad Sci USA. 2018;115:E12370–E7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He D, Mao A, Li Y, Tam S, Zheng Y, Yao X, et al. TRPC1 participates in the HSV-1 infection process by facilitating viral entry. Sci Adv. 2020;6:eaaz3367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang P, Li SS, Xu XF, Yang C, Cheng C, Wang JS, et al. TRPV4 channel is involved in HSV-2 infection in human vaginal epithelial cells through triggering Ca2+ oscillation. Acta Pharmacol Sin. 2023;44:811–21.

    Article  CAS  PubMed  Google Scholar 

  15. Fujioka Y, Nishide S, Ose T, Suzuki T, Kato I, Fukuhara H, et al. A sialylated voltage-dependent Ca2+ channel binds hemagglutinin and mediates influenza a virus entry into mammalian cells. Cell Host Microbe. 2018;23:809–18.e5.

    Article  CAS  PubMed  Google Scholar 

  16. Zhong Y, Tang X, Sheng X, Xing J, Zhan W. Voltage-dependent anion channel protein 2 (VDAC2) and receptor of activated protein C kinase 1 (RACK1) act as functional receptors for lymphocystis disease virus infection. J Virol. 2019;93:e00122–19.

  17. Bailly C, Thuru X. Targeting of tetraspanin CD81 with monoclonal antibodies and small molecules to combat cancers and viral diseases. Cancers (Basel). 2023;15:2186.

  18. Bruening J, Lasswitz L, Banse P, Kahl S, Marinach C, Vondran FW, et al. Hepatitis C virus enters liver cells using the CD81 receptor complex proteins calpain-5 and CBLB. PLoS Pathog. 2018;14:e1007111.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581:215–20.

    Article  CAS  PubMed  Google Scholar 

  20. Turner AJ, Nalivaeva NN. Angiotensin-converting enzyme 2 (ACE2): two decades of revelations and re-evaluation. Peptides. 2022;151:170766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bezzerri V, Gentili V, Api M, Finotti A, Papi C, Tamanini A, et al. SARS-CoV-2 viral entry and replication is impaired in cystic fibrosis airways due to ACE2 downregulation. Nat Commun. 2023;14:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zaitseva E, Zaitsev E, Melikov K, Arakelyan A, Marin M, Villasmil R, et al. Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine. Cell Host Microbe. 2017;22:99–110.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Futai M, Sun-Wada GH, Wada Y, Matsumoto N, Nakanishi-Matsui M. Vacuolar-type ATPase: a proton pump to lysosomal trafficking. Proc Jpn Acad Ser B Phys Biol Sci. 2019;95:261–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scott CC, Gruenberg J. Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. Bioessays. 2011;33:103–10.

    Article  CAS  PubMed  Google Scholar 

  25. Lang Y, Li F, Liu Q, Xia Z, Ji Z, Hu J, et al. The Kv1.3 ion channel acts as a host factor restricting viral entry. FASEB J. 2021;35:e20995.

    Article  CAS  PubMed  Google Scholar 

  26. Hover S, Foster B, Fontana J, Kohl A, Goldstein SAN, Barr JN, et al. Bunyavirus requirement for endosomal K+ reveals new roles of cellular ion channels during infection. PLoS Pathog. 2018;14:e1006845.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hover S, King B, Hall B, Loundras EA, Taqi H, Daly J, et al. Modulation of potassium channels inhibits bunyavirus infection. J Biol Chem. 2016;291:3411–22.

    Article  CAS  PubMed  Google Scholar 

  28. Sun J, Ding Y, Zhou Q, Kalds P, Han J, Zhang K, et al. KCNE4 is a crucial host factor for Orf virus infection by mediating viral entry. Virol J. 2024;21:181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo YY, Gao Y, Hu YR, Zhao Y, Jiang D, Wang Y, et al. The transient receptor potential vanilloid 2 (TRPV2) channel facilitates virus infection through the Ca2+ -LRMDA axis in myeloid cells. Adv Sci. 2022;9:e2202857.

    Article  Google Scholar 

  30. Santoni G, Morelli MB, Amantini C, Nabissi M, Santoni M, Santoni A. Involvement of the TRPML mucolipin channels in viral infections and anti-viral innate immune responses. Front Immunol. 2020;11:739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sakurai Y, Kolokoltsov AA, Chen CC, Tidwell MW, Bauta WE, Klugbauer N, et al. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science. 2015;347:995–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khan N, Halcrow PW, Lakpa KL, Afghah Z, Miller NM, Dowdy SF, et al. Two-pore channels regulate Tat endolysosome escape and Tat-mediated HIV-1 LTR transactivation. FASEB J. 2020;34:4147–62.

    Article  CAS  PubMed  Google Scholar 

  33. Doyle CA, Busey GW, Iobst WH, Kiessling V, Renken C, Doppalapudi H, et al. Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7. Nat Commun. 2024;15:8479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanjai Kumar P, Nayak TK, Mahish C, Sahoo SS, Radhakrishnan A, De S, et al. Inhibition of transient receptor potential vanilloid 1 (TRPV1) channel regulates chikungunya virus infection in macrophages. Arch Virol. 2021;166:139–55.

    Article  CAS  PubMed  Google Scholar 

  35. Igloi Z, Mohl BP, Lippiat JD, Harris M, Mankouri J. Requirement for chloride channel function during the hepatitis C virus life cycle. J Virol. 2015;89:4023–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dionicio CL, Pena F, Constantino-Jonapa LA, Vazquez C, Yocupicio-Monroy M, Rosales R, et al. Dengue virus induced changes in Ca2+ homeostasis in human hepatic cells that favor the viral replicative cycle. Virus Res. 2018;245:17–28.

    Article  CAS  PubMed  Google Scholar 

  37. Hyser JM, Utama B, Crawford SE, Broughman JR, Estes MK. Activation of the endoplasmic reticulum calcium sensor STIM1 and store-operated calcium entry by rotavirus requires NSP4 viroporin activity. J Virol. 2013;87:13579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Yuan X, Wang J, Han M, Lu H, Wang Y, et al. TRPV4 promotes HBV replication and capsid assembly via methylation modification of H3K4 and HBc ubiquitin. J Med Virol. 2024;96:e29510.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang S, Huang Y, Wang G, Zhang X, Xia L, Cao Y, et al. Capsaicin inhibits porcine enteric coronaviruses replication through blocking TRPV4-mediated calcium ion influx. Int J Biol Macromol. 2025;302:140495.

    Article  CAS  PubMed  Google Scholar 

  40. Chen L, Zhu L, Lu X, Ming X, Yang B. TRPM2 regulates autophagy to participate in hepatitis B virus replication. J Viral Hepat. 2022;29:627–36.

    Article  CAS  PubMed  Google Scholar 

  41. Chen X, Yan Y, Liu Z, Yang S, Li W, Wang Z, et al. In vitro and in vivo inhibition of the host TRPC4 channel attenuates Zika virus infection. EMBO Mol Med. 2024;16:1817–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han C, Zeng X, Yao S, Gao L, Zhang L, Qi X, et al. Voltage-dependent anion channel 1 interacts with ribonucleoprotein complexes to enhance infectious bursal disease virus polymerase activity. J Virol. 2017;91:e00584–17.

  43. Lin W, Zhang Z, Xu Z, Wang B, Li X, Cao H, et al. The association of receptor of activated protein kinase C 1(RACK1) with infectious bursal disease virus viral protein VP5 and voltage-dependent anion channel 2 (VDAC2) inhibits apoptosis and enhances viral replication. J Biol Chem. 2015;290:8500–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Li J, Cao H, Li LF, Dai J, Cao M, et al. African swine fever virus modulates the endoplasmic reticulum stress-ATF6-calcium axis to facilitate viral replication. Emerg Microbes Infect. 2024;13:2399945.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bai D, Fang L, Xia S, Ke W, Wang J, Wu X, et al. Porcine deltacoronavirus (PDCoV) modulates calcium influx to favor viral replication. Virology. 2020;539:38–48.

    Article  CAS  PubMed  Google Scholar 

  46. Rashid MU, Coombs KM. Chloride intracellular channel protein 1 (CLIC1) is a critical host cellular factor for influenza A virus replication. Viruses. 2024;16:129.

  47. Muller M, Slivinski N, Todd E, Khalid H, Li R, Karwatka M, et al. Chikungunya virus requires cellular chloride channels for efficient genome replication. PLoS Negl Trop Dis. 2019;13:e0007703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han Z, Madara JJ, Herbert A, Prugar LI, Ruthel G, Lu J, et al. Calcium regulation of hemorrhagic fever virus budding: mechanistic implications for host-oriented therapeutic intervention. PLoS Pathog. 2015;11:e1005220.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Madigan VJ, Berry GE, Tyson TO, Nardone-White D, Ark J, Elmore ZC, et al. The Golgi calcium ATPase pump plays an essential role in adeno-associated virus trafficking and transduction. J Virol. 2020;94:e01604–20.

  50. Chen D, Zheng Q, Sun L, Ji M, Li Y, Deng H, et al. ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress. Dev Cell. 2021;56:3250–63.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Herrmann M, Ruprecht K, Sauter M, Martinez J, van Heteren P, Glas M, et al. Interaction of human immunodeficiency virus gp120 with the voltage-gated potassium channel BEC1. FEBS Lett. 2010;584:3513–8.

    Article  CAS  PubMed  Google Scholar 

  52. Mankouri J, Dallas ML, Hughes ME, Griffin SD, Macdonald A, Peers C, et al. Suppression of a pro-apoptotic K+ channel as a mechanism for hepatitis C virus persistence. Proc Natl Acad Sci USA. 2009;106:15903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Redman PT, He K, Hartnett KA, Jefferson BS, Hu L, Rosenberg PA, et al. Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc Natl Acad Sci USA. 2007;104:3568–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuchay S, Saeed M, Giorgi C, Li J, Hoffmann HH, Pinton P, et al. NS5A promotes constitutive degradation of IP3R3 to counteract apoptosis induced by hepatitis C virus. Cell Rep. 2018;25:833–40.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen XJ, Seth S, Yue G, Kamat P, Compans RW, Guidot D, et al. Influenza virus inhibits ENaC and lung fluid clearance. Am J Physiol Lung Cell Mol Physiol. 2004;287:L366–73.

    Article  CAS  PubMed  Google Scholar 

  56. Lazrak A, Iles KE, Liu G, Noah DL, Noah JW, Matalon S. Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB J. 2009;23:3829–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Londino JD, Lazrak A, Jurkuvenaite A, Collawn JF, Noah JW, Matalon S. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity. Am J Physiol Lung Cell Mol Physiol. 2013;304:L582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen L, Song W, Davis IC, Shrestha K, Schwiebert E, Sullender WM, et al. Inhibition of Na+ transport in lung epithelial cells by respiratory syncytial virus infection. Am J Respir Cell Mol Biol. 2009;40:588–600.

    Article  CAS  PubMed  Google Scholar 

  59. Long C, Qi M, Wang J, Luo J, Qin X, Gao G, et al. Respiratory syncytial virus persistent infection causes acquired CFTR dysfunction in human bronchial epithelial cells. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2021;46:949–57.

    PubMed  Google Scholar 

  60. Song W, Liu G, Bosworth CA, Walker JR, Megaw GA, Lazrak A, et al. Respiratory syncytial virus inhibits lung epithelial Na+ channels by up-regulating inducible nitric-oxide synthase. J Biol Chem. 2009;284:7294–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grant SN, Lester HA. Regulation of epithelial sodium channel activity by SARS-CoV-1 and SARS-CoV-2 proteins. Biophys J. 2021;120:2805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hou Y, Yu T, Wang T, Ding Y, Cui Y, Nie H. Competitive cleavage of SARS-CoV-2 spike protein and epithelial sodium channel by plasmin as a potential mechanism for COVID-19 infection. Am J Physiol Lung Cell Mol Physiol. 2022;323:L569–L77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Padget RL, Zeitz MJ, Blair GA, Wu X, North MD, Tanenbaum MT, et al. Acute adenoviral infection elicits an arrhythmogenic substrate prior to myocarditis. Circ Res. 2024;134:892–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hsu K, Seharaseyon J, Dong P, Bour S, Marban E. Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel. Mol Cell. 2004;14:259–67.

    Article  CAS  PubMed  Google Scholar 

  65. Dobson SJ, Mankouri J, Whitehouse A. Identification of potassium and calcium channel inhibitors as modulators of polyomavirus endosomal trafficking. Antivir Res. 2020;179:104819.

    Article  CAS  PubMed  Google Scholar 

  66. Penny CJ, Vassileva K, Jha A, Yuan Y, Chee X, Yates E, et al. Mining of Ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. Biochim Biophys Acta Mol Cell Res. 2019;1866:1151–61.

    Article  CAS  PubMed  Google Scholar 

  67. Clementi N, Scagnolari C, D’Amore A, Palombi F, Criscuolo E, Frasca F, et al. Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacol Res. 2021;163:105255.

    Article  CAS  PubMed  Google Scholar 

  68. Strazic Geljic I, Kucan Brlic P, Musak L, Karner D, Ambriovic-Ristov A, Jonjic S, et al. Viral interactions with adaptor-protein complexes: a ubiquitous trait among viral species. Int J Mol Sci 2021;22:5274.

  69. Heister PM, Poston RN. Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential therapeutic agent for COVID-19. Pharmacol Res Perspect. 2020;8:e00653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xia Z, Ren Y, Li S, Xu J, Wu Y, Cao Z. ML-SA1 and SN-2 inhibit endocytosed viruses through regulating TRPML channel expression and activity. Antivir Res. 2021;195:105193.

    Article  CAS  PubMed  Google Scholar 

  71. Xia Z, Wang L, Li S, Tang W, Sun F, Wu Y, et al. ML-SA1, a selective TRPML agonist, inhibits DENV2 and ZIKV by promoting lysosomal acidification and protease activity. Antivir Res. 2020;182:104922.

    Article  CAS  PubMed  Google Scholar 

  72. Schwickert KK, Glitscher M, Bender D, Benz NI, Murra R, Schwickert K, et al. Zika virus replication is impaired by a selective agonist of the TRPML2 ion channel. Antivir Res. 2024;228:105940.

    Article  CAS  PubMed  Google Scholar 

  73. Huang L, Li H, Ye Z, Xu Q, Fu Q, Sun W, et al. Berbamine inhibits Japanese encephalitis virus (JEV) infection by compromising TPRMLs-mediated endolysosomal trafficking of low-density lipoprotein receptor (LDLR). Emerg Microbes Infect. 2021;10:1257–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang L, Liu L, Zhu J, Chen N, Chen J, Chan CF, et al. Bis-benzylisoquinoline alkaloids inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy. Virol Sin. 2024;39:892–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu J, Chen H, Gao F, Jian W, Huang G, Sunkang Y, et al. Bis-benzylisoquinoline alkaloids inhibit African swine fever virus internalization and replication by impairing late endosomal/lysosomal function. J Virol. 2024;98:e0032724.

    Article  PubMed  Google Scholar 

  76. Chen F, Shen H, Liu G, Zhang P, Zhang L, Lin S, et al. Verapamil inhibits respiratory syncytial virus infection by regulating Ca2+ influx. Life Sci. 2024;352:122877.

    Article  CAS  PubMed  Google Scholar 

  77. Gehring G, Rohrmann K, Atenchong N, Mittler E, Becker S, Dahlmann F, et al. The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. J Antimicrob Chemother. 2014;69:2123–31.

    Article  CAS  PubMed  Google Scholar 

  78. Straus MR, Bidon MK, Tang T, Jaimes JA, Whittaker GR, Daniel S. Inhibitors of L-Type calcium channels show therapeutic potential for treating SARS-CoV-2 infections by preventing virus entry and spread. ACS Infect Dis. 2021;7:2807–15.

    Article  CAS  PubMed  Google Scholar 

  79. Ding L, Jiang P, Xu X, Lu W, Yang C, Li L, et al. T-type calcium channels blockers inhibit HSV-2 infection at the late stage of genome replication. Eur J Pharmacol. 2021;892:173782.

    Article  CAS  PubMed  Google Scholar 

  80. Feng J, Yang L, Ran L, Qi X, Wang X, Zhang Y, et al. Loss of TRPM8 exacerbate herpes simplex keratitis infection in mice by promoting the infiltration of CD11b+ Ly6G+ cells and increasing the viral load in the cornea. Invest Ophthalmol Vis Sci. 2023;64:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Taylor DJR, Hamid SM, Andres AM, Saadaeijahromi H, Piplani H, Germano JF, et al. Antiviral effects of menthol on Coxsackievirus B. Viruses. 2020;12:373.

  82. Li H, Zhang LK, Li SF, Zhang SF, Wan WW, Zhang YL, et al. Calcium channel blockers reduce severe fever with thrombocytopenia syndrome virus (SFTSV) related fatality. Cell Res. 2019;29:739–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zheng K, Chen M, Xiang Y, Ma K, Jin F, Wang X, et al. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB. Biochem Biophys Res Commun. 2014;446:990–6.

    Article  CAS  PubMed  Google Scholar 

  84. Murray MJ, Bonilla-Medrano NI, Lee QL, Oxenford SJ, Angell R, Depledge DP, et al. Evasion of a human cytomegalovirus entry inhibitor with potent cysteine reactivity is concomitant with the utilization of a heparan sulfate proteoglycan-independent route of entry. J Virol. 2020;94:e02012–19.

  85. Jiang P, Dai Z, Yang C, Ding L, Li S, Xu X, et al. CFTR inhibitors display antiviral activity against herpes simplex virus. Viruses. 2024;16:1308.

  86. Hook JL, Kuebler WM. CFTR as a therapeutic target for severe lung infection. Am J Physiol Lung Cell Mol Physiol. 2025;328:L229–L38.

    Article  CAS  PubMed  Google Scholar 

  87. Panou MM, Antoni M, Morgan EL, Loundras EA, Wasson CW, Welberry-Smith M, et al. Glibenclamide inhibits BK polyomavirus infection in kidney cells through CFTR blockade. Antivir Res. 2020;178:104778.

    Article  CAS  PubMed  Google Scholar 

  88. Brand JD, Lazrak A, Trombley JE, Shei RJ, Adewale AT, Tipper JL, et al. Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight. 2018;3:e123467.

  89. Harvey BJ. Molecular mechanisms of dexamethasone actions in COVID-19: ion channels and airway surface liquid dynamics. Steroids. 2024;202:109348.

    Article  CAS  PubMed  Google Scholar 

  90. Chordia P, MacArthur RD. Crofelemer, a novel agent for treatment of non-infectious diarrhea in HIV-infected persons. Expert Rev Gastroenterol Hepatol. 2013;7:591–600.

    Article  PubMed  Google Scholar 

  91. Yeo QM, Crutchley R, Cottreau J, Tucker A, Garey KW. Crofelemer, a novel antisecretory agent approved for the treatment of HIV-associated diarrhea. Drugs Today. 2013;49:239–52.

    Article  CAS  Google Scholar 

  92. Yu B, Jiang Y, Zhang B, Yang H, Ma T. Resveratrol dimer trans-epsilon-viniferin prevents rotaviral diarrhea in mice by inhibition of the intestinal calcium-activated chloride channel. Pharmacol Res. 2018;129:453–61.

    Article  CAS  PubMed  Google Scholar 

  93. Braga L, Ali H, Secco I, Chiavacci E, Neves G, Goldhill D, et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature. 2021;594:88–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Feng S, Puchades C, Ko J, Wu H, Chen Y, Figueroa EE, et al. Identification of a drug binding pocket in TMEM16F calcium-activated ion channel and lipid scramblase. Nat Commun. 2023;14:4874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ousingsawat J, Centeio R, Schreiber R, Kunzelmann K. Niclosamide, but not ivermectin, inhibits anoctamin 1 and 6 and attenuates inflammation of the respiratory tract. Pflug Arch. 2024;476:211–27.

    Article  CAS  Google Scholar 

  96. Sim JR, Shin DH, Park PG, Park SH, Bae JY, Lee Y, et al. Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition. Cell Rep. 2022;40:111117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang F, Wei N, Cai S, Liu J, Lan Q, Zhang H, et al. Genome-wide CRISPR screens identify CLC-2 as a drug target for anti-herpesvirus therapy: tackling herpesvirus drug resistance. Sci China Life Sci. 2025;68:515–26.

    Article  CAS  PubMed  Google Scholar 

  98. Dubey RC, Mishra N, Gaur R. G protein-coupled and ATP-sensitive inwardly rectifying potassium ion channels are essential for HIV entry. Sci Rep. 2019;9:4113.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rajendran R, Krishnan R, Kim JO, Oh MJ. Regulatory effects of potassium channel blockers on potassium channel genes upon nervous necrosis virus infection in sevenband grouper Hyporthodus septumfasciatus. Gene. 2024;890:147815.

    Article  CAS  PubMed  Google Scholar 

  100. Zyrianova T, Lopez B, Zou K, Gu C, Pham D, Talapaneni S, et al. Activation of TREK-1 (K(2P)2.1) potassium channels protects against influenza A-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2023;324:L64–L75.

    Article  CAS  PubMed  Google Scholar 

  101. Torriani G, Trofimenko E, Mayor J, Fedeli C, Moreno H, Michel S, et al. Identification of clotrimazole derivatives as specific inhibitors of arenavirus fusion. J Virol. 2019;93:e01744–18.

  102. Zhang DD, Liu Y, Wang W, Wu W, Chen J, Wan L, et al. SARS-CoV-2 N protein induces hypokalemia in acute kidney injury mice via ENaC-dependent mechanism. Mol Ther. 2025;33:3778–88.

  103. Genovese M, Galietta LJV. Anoctamin pharmacology. Cell Calcium. 2024;121:102905.

    Article  CAS  PubMed  Google Scholar 

  104. Russell T, Gangotia D, Barry G. Assessing the potential of repurposing ion channel inhibitors to treat emerging viral diseases and the role of this host factor in virus replication. Biomed Pharmacother. 2022;156:113850.

    Article  CAS  PubMed  Google Scholar 

  105. Alharbi AF, Parrington J. TPC2 in drug development: emerging target for cancer, viral infections, cardiovascular diseases, and neurological disorders. Pharmacol Res. 2025;213:107655.

    Article  CAS  PubMed  Google Scholar 

  106. Akole A, Warner JM. Model of influenza virus acidification. PLoS One. 2019;14:e0214448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. To J, Torres J. Viroporins in the influenza virus. Cells. 2019;8:654.

  108. Cheshenko N, Liu W, Satlin LM, Herold BC. Multiple receptor interactions trigger release of membrane and intracellular calcium stores critical for herpes simplex virus entry. Mol Biol Cell. 2007;18:3119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ehrlich LS, Medina GN, Khan MB, Powell MD, Mikoshiba K, Carter CA. Activation of the inositol (1,4,5)-triphosphate calcium gate receptor is required for HIV-1 Gag release. J Virol. 2010;84:6438–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hyser JM, Collinson-Pautz MR, Utama B, Estes MK. Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. mBio 2010;1:e00265–10.

  111. Pham T, Perry JL, Dosey TL, Delcour AH, Hyser JM. The rotavirus NSP4 viroporin domain is a calcium-conducting ion channel. Sci Rep. 2017;7:43487.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Min Y, Xiong W, Shen W, Liu X, Qi Q, Zhang Y, et al. Developing nucleoside tailoring strategies against SARS-CoV-2 via ribonuclease targeting chimera. Sci Adv. 2024;10:eadl4393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Minatel VM, Prudencio CR, Barraviera B, Ferreira RS, Jr. Nanobodies: a promising approach to treatment of viral diseases. Front Immunol. 2023;14:1303353.

  114. Mirzaie S, Abdi F, GhavamiNejad A, Lu B, Wu XY. Covalent antiviral agents. Adv Exp Med Biol. 2021;1322:285–312.

    Article  CAS  PubMed  Google Scholar 

  115. Nie C, Stadtmuller M, Parshad B, Wallert M, Ahmadi V, Kerkhoff Y, et al. Heteromultivalent topology-matched nanostructures as potent and broad-spectrum influenza A virus inhibitors. Sci Adv. 2021;7:eabd3803.

  116. Wu Y, Lin B, Lu Y, Li L, Deng K, Zhang S, et al. Aptamer-LYTACs for targeted degradation of extracellular and membrane proteins. Angew Chem Int Ed Engl. 2023;62:e202218106.

    Article  CAS  PubMed  Google Scholar 

  117. Li Q, Zhou L, Qin S, Huang Z, Li B, Liu R, et al. Proteolysis-targeting chimeras in biotherapeutics: current trends and future applications. Eur J Med Chem. 2023;257:115447.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Key Research and Development Program of China (2024YFA1306500 to JY, 2023YFF1204000 to JY), the National Natural Science Foundation of China (32370761 to CX, 32171147 to JY, and 32371200 to JY), the Fundamental Research Funds for the Central Universities (2042022dx0003 to JY), and the State Key Laboratory for Animal Disease Control and Prevention (SKLADCPKFKT202515 to YYG).

Author information

Authors and Affiliations

Authors

Contributions

YYG: Writing-original draft, Formal analysis, Data curation. XYM: Visualization, Formal analysis. JJW: Writing-original draft, Data curation. CX: Supervision, Visualization, Project administration. JY: Supervision, Visualization, Project administration.

Corresponding authors

Correspondence to Chang Xie or Jing Yao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Yy., Mo, Xy., Wu, Jj. et al. Targeting virus-interacting host ion channels as a novel antiviral strategy. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01677-6

Keywords

Search

Quick links