Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intergenerational effects of the microbiota on neurodevelopment: mechanisms and therapeutic perspectives

Abstract

Neurodevelopment is governed by precisely timed biological processes that are sensitive to environmental influences across generations. Among these, the gut microbiota (GM) has emerged as a key regulator of neurodevelopmental trajectories, not only within individuals but also through intergenerational transmission. This review highlights the emerging significance of the GM in shaping offspring brain and behavior, emphasizing its capacity to mediate maternal influences across generations. We first summarize the temporal and intergenerational effects of GM on host physiology and neurobehavioral outcomes. We then explore the mechanistic basis of neuro-microbial-immunometabolic interactions including epigenetic regulation, neurotransmitter modulation, neuroinflammation and intestinal barrier function in the context of the microbiota-gut-brain axis. Particular attention is given to how these mechanisms mediate the long-term impact of maternal states—such as stress, diet and inflammation—on offspring neurodevelopment. We further highlight the translational gap from animal models to humans and propose integrating multi-omics, computational modeling, and clinical approaches to define developmental windows and guide precision microbiota-based interventions for neurodevelopmental disorders. By elucidating how microbiota influence neurodevelopment across generations, this review aims to inform the development of novel microbial and pharmacological therapies to promote brain health from the maternal period through early offspring life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuro-microbial-immunometabolic network in the intergenerational modulation of development.
Fig. 2: Microbial metabolites from the maternal microbiome contribute to fetal and neonatal immune development.
Fig. 3: Brain-gut-immunometabolic network in the intergenerational modulation of development.
Fig. 4: Mechanistic insights into gut microbiome-mediated DNA and RNA methylation.
Fig. 5: Strategies for maternal and infant gut microbiome interventions.

Similar content being viewed by others

References

  1. Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N. The cellular and molecular landscapes of the developing human central nervous system. Neuron. 2016;89:248–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roswall J, Olsson LM, Kovatcheva-Datchary P, Nilsson S, Tremaroli V, Simon MC, et al. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe. 2021;29:765–776 e3.

    Article  CAS  PubMed  Google Scholar 

  3. Grech A, Collins CE, Holmes A, Lal R, Duncanson K, Taylor R, et al. Maternal exposures and the infant gut microbiome: a systematic review with meta-analysis. Gut Microbes. 2021;13:1–30.

    Article  PubMed  Google Scholar 

  4. Hsiao CC, Tsai ML, Chen CC, Lin HC. Early optimal nutrition improves neurodevelopmental outcomes for very preterm infants. Nutr Rev. 2014;72:532–40.

    Article  PubMed  Google Scholar 

  5. de Weerth C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci Biobehav Rev. 2017;83:458–71.

    Article  PubMed  Google Scholar 

  6. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zoubovsky SP, Williams MT, Hoseus S, Tumukuntala S, Riesenberg A, Schulkin J, et al. Neurobehavioral abnormalities following prenatal psychosocial stress are differentially modulated by maternal environment. Transl Psychiatry. 2022;12:22.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Muhammad F, Fan B, Wang R, Ren J, Jia S, Wang L, et al. The molecular gut-brain axis in early brain development. Int J Mol Sci. 2022;23:15389.

  9. Poon SSB, Hung LY, Wu Q, Parathan P, Yalcinkaya N, Haag A, et al. Neonatal antibiotics have long term sex-dependent effects on the enteric nervous system. J Physiol. 2022;600:4303–23.

    Article  CAS  PubMed  Google Scholar 

  10. Al Nabhani Z, Dulauroy S, Lecuyer E, Polomack B, Campagne P, Berard M, et al. Excess calorie intake early in life increases susceptibility to colitis in adulthood. Nat Metab. 2019;1:1101–9.

    Article  PubMed  Google Scholar 

  11. Ahrens AP, Hyotylainen T, Petrone JR, Igelstrom K, George CD, Garrett TJ, et al. Infant microbes and metabolites point to childhood neurodevelopmental disorders. Cell. 2024;187:1853–1873.e15.

    Article  CAS  PubMed  Google Scholar 

  12. Parnanen K, Karkman A, Hultman J, Lyra C, Bengtsson-Palme J, Larsson DGJ, et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun. 2018;9:3891.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Prado EL, Dewey KG. Nutrition and brain development in early life. Nutr Rev. 2014;72:267–84.

    Article  PubMed  Google Scholar 

  14. Smith BL, Reyes TM. Offspring neuroimmune consequences of maternal malnutrition: potential mechanism for behavioral impairments that underlie metabolic and neurodevelopmental disorders. Front Neuroendocrinol. 2017;47:109–22.

    Article  CAS  PubMed  Google Scholar 

  15. Edlow AG. Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenat Diagn. 2017;37:95–110.

    Article  PubMed  Google Scholar 

  16. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016;165:1762–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sohrabi R, Mousavi SN, Shapouri R, Nasiri Z, Heidarzadeh S, Shokri R. The gut dysbiosis of mothers with gestational diabetes and its correlation with diet. Sci Rep. 2025;15:18566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dearden L, Furigo IC, Pantaleao LC, Wong LWP, Fernandez-Twinn DS, de Almeida-Faria J, et al. Maternal obesity increases hypothalamic miR-505-5p expression in mouse offspring leading to altered fatty acid sensing and increased intake of high-fat food. PLoS Biol. 2024;22:e3002641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019;101:246–259 e6.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang P, Jiang G, Wang Y, Yan E, He L, Guo J, et al. Maternal consumption of l-malic acid enriched diets improves antioxidant capacity and glucose metabolism in offspring by regulating the gut microbiota. Redox Biol. 2023;67:102889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ryan DP, Henzel KS, Pearson BL, Siwek ME, Papazoglou A, Guo L, et al. A paternal methyl donor-rich diet altered cognitive and neural functions in offspring mice. Mol Psychiatry. 2018;23:1345–55.

    Article  CAS  PubMed  Google Scholar 

  23. Oh J, Riek AE, Bauerle KT, Dusso A, McNerney KP, Barve RA, et al. Embryonic vitamin D deficiency programs hematopoietic stem cells to induce type 2 diabetes. Nat Commun. 2023;14:3278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peter CJ, Fischer LK, Kundakovic M, Garg P, Jakovcevski M, Dincer A, et al. DNA methylation signatures of early childhood malnutrition associated with impairments in attention and cognition. Biol Psychiatry. 2016;80:765–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008;371:340–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yajnik CS, Deshmukh US. Fetal programming: maternal nutrition and role of one-carbon metabolism. Rev Endocr Metab Disord. 2012;13:121–7.

    Article  CAS  PubMed  Google Scholar 

  27. Sucksdorff M, Brown AS, Chudal R, Surcel HM, Hinkka-Yli-Salomaki S, Cheslack-Postava K, et al. Maternal vitamin D levels and the risk of offspring attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2021;60:142–151 e2.

    Article  PubMed  Google Scholar 

  28. Vuong HE, Pronovost GN, Williams DW, Coley EJL, Siegler EL, Qiu A, et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature. 2020;586:281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jasarevic E, Rodgers AB, Bale TL. A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment. Neurobiol Stress. 2015;1:81–8.

    Article  PubMed  Google Scholar 

  30. Fasano A, Chassaing B, Haller D, Flores Ventura E, Carmen-Collado M, Pastor N, et al. Microbiota during pregnancy and early life: role in maternal-neonatal outcomes based on human evidence. Gut Microbes. 2024;16:2392009.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gonzalez A, Stombaugh J, Lozupone C, Turnbaugh PJ, Gordon JI, Knight R. The mind-body-microbial continuum. Dialogues Clin Neurosci. 2011;13:55–62.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xue H, Liang B, Wang Y, Gao H, Fang S, Xie K, et al. The regulatory effect of polysaccharides on the gut microbiota and their effect on human health: a review. Int J Biol Macromol. 2024;270:132170.

    Article  CAS  PubMed  Google Scholar 

  33. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.

    Article  CAS  PubMed  Google Scholar 

  34. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6:237ra65–237ra65.

    PubMed  PubMed Central  Google Scholar 

  35. Lopez-Tello J, Schofield Z, Kiu R, Dalby MJ, van Sinderen D, Le Gall G, et al. Maternal gut microbiota Bifidobacterium promotes placental morphogenesis, nutrient transport and fetal growth in mice. Cell Mol Life Sci. 2022;79:386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pronovost GN, Yu KB, Coley-O’Rourke EJL, Telang SS, Chen AS, Vuong HE, et al. The maternal microbiome promotes placental development in mice. Sci Adv. 2023;9:eadk1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut. 2023;72:772–86.

    Article  CAS  PubMed  Google Scholar 

  38. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang S, Egan M, Ryan CA, Boyaval P, Dempsey EM, Ross RP, et al. A good start in life is important-perinatal factors dictate early microbiota development and longer term maturation. FEMS Microbiol Rev. 2020;44:763–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jasarevic E, Howard CD, Morrison K, Misic A, Weinkopff T, Scott P, et al. The maternal vaginal microbiome partially mediates the effects of prenatal stress on offspring gut and hypothalamus. Nat Neurosci. 2018;21:1061–71.

    Article  CAS  PubMed  Google Scholar 

  41. Gilbert NM, Foster LR, Cao B, Yin Y, Mysorekar IU, Lewis AL. Gardnerella vaginalis promotes group B Streptococcus vaginal colonization, enabling ascending uteroplacental infection in pregnant mice. Am J Obstet Gynecol. 2021;224:530 e1–530 e17.

    Article  PubMed  Google Scholar 

  42. Fischer LA, Demerath E, Bittner-Eddy P, Costalonga M. Placental colonization with periodontal pathogens: the potential missing link. Am J Obstet Gynecol. 2019;221:383–392 e3.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xu B, Han YW. Oral bacteria, oral health, and adverse pregnancy outcomes. Periodontol 2000. 2022;89:181–9.

    Article  PubMed  Google Scholar 

  44. Iheozor-Ejiofor Z, Middleton P, Esposito M, Glenny AM. Treating periodontal disease for preventing adverse birth outcomes in pregnant women. Cochrane Database Syst Rev. 2017;6:CD005297.

    PubMed  Google Scholar 

  45. Ren H, Du M. Role of maternal periodontitis in preterm birth. Front Immunol. 2017;8:139.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lithgow KV, Buchholz VCH, Ku E, Konschuh S, D’Aubeterre A, Sycuro LK. Protease activities of vaginal Porphyromonas species disrupt coagulation and extracellular matrix in the cervicovaginal niche. NPJ Biofilms Microbiomes. 2022;8:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Keelan JA, Wong PM, Bird PS, Mitchell MD. Innate inflammatory responses of human decidual cells to periodontopathic bacteria. Am J Obstet Gynecol. 2010;202:471 e1–11.

    Article  PubMed  Google Scholar 

  48. Thapar A, Cooper M, Rutter M. Neurodevelopmental disorders. Lancet Psychiatry. 2017;4:339–46.

    Article  PubMed  Google Scholar 

  49. Muhle RA, Reed HE, Stratigos KA, Veenstra-VanderWeele J. The emerging clinical neuroscience of autism spectrum disorder: a review. JAMA Psychiatry. 2018;75:514–23.

    Article  PubMed  Google Scholar 

  50. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry. 2007;164:942–8.

    Article  PubMed  Google Scholar 

  51. Parenti I, Rabaneda LG, Schoen H, Novarino G. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci. 2020;43:608–21.

    Article  CAS  PubMed  Google Scholar 

  52. Joffe JM. Genotype and prenatal and premating stress interact to affect adult behavior in rats. Science. 1965;150:1844–5.

    Article  CAS  PubMed  Google Scholar 

  53. Walsh K, McCormack CA, Webster R, Pinto A, Lee S, Feng T, et al. Maternal prenatal stress phenotypes associate with fetal neurodevelopment and birth outcomes. Proc Natl Acad Sci USA. 2019;116:23996–4005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Galley JD, Mashburn-Warren L, Blalock LC, Lauber CL, Carroll JE, Ross KM, et al. Maternal anxiety, depression and stress affects offspring gut microbiome diversity and bifidobacterial abundances. Brain Behav Immun. 2023;107:253–64.

    Article  CAS  PubMed  Google Scholar 

  55. Gomez de Aguero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296–302.

    Article  PubMed  Google Scholar 

  56. Xu Z, Zhang X, Chang H, Kong Y, Ni Y, Liu R, et al. Rescue of maternal immune activation-induced behavioral abnormalities in adult mouse offspring by pathogen-activated maternal T(reg) cells. Nat Neurosci. 2021;24:818–30.

    Article  CAS  PubMed  Google Scholar 

  57. Hantsoo L, Kornfield S, Anguera MC, Epperson CN. Inflammation: a proposed intermediary between maternal stress and offspring neuropsychiatric risk. Biol Psychiatry. 2019;85:97–106.

    Article  PubMed  Google Scholar 

  58. Seki D, Mayer M, Hausmann B, Pjevac P, Giordano V, Goeral K, et al. Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage. Cell Host Microbe. 2021;29:1558–1572 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Argaw-Denboba A, Schmidt TSB, Di Giacomo M, Ranjan B, Devendran S, Mastrorilli E, et al. Paternal microbiome perturbations impact offspring fitness. Nature. 2024;629:652–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun Y, Xie R, Li L, Jin G, Zhou B, Huang H, et al. Prenatal maternal stress exacerbates experimental colitis of offspring in adulthood. Front Immunol. 2021;12:700995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun. 2012;26:607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Estes ML, McAllister AK. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016;353:772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Koren O, Konnikova L, Brodin P, Mysorekar IU, Collado MC. The maternal gut microbiome in pregnancy: implications for the developing immune system. Nat Rev Gastroenterol Hepatol. 2024;21:35–45.

    Article  PubMed  Google Scholar 

  64. Foster JA. Modulating brain function with microbiota. Science. 2022;376:936–7.

    Article  CAS  PubMed  Google Scholar 

  65. Blacher E, Bashiardes S, Shapiro H, Rothschild D, Mor U, Dori-Bachash M, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature. 2019;572:474–80.

    Article  CAS  PubMed  Google Scholar 

  66. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Needham BD, Funabashi M, Adame MD, Wang Z, Boktor JC, Haney J, et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature. 2022;602:647–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stewart Campbell A, Needham BD, Meyer CR, Tan J, Conrad M, Preston GM, et al. Safety and target engagement of an oral small-molecule sequestrant in adolescents with autism spectrum disorder: an open-label phase 1b/2a trial. Nat Med. 2022;28:528–34.

    Article  CAS  PubMed  Google Scholar 

  69. Tan JK, Macia L, Mackay CR. Dietary fiber and SCFAs in the regulation of mucosal immunity. J Allergy Clin Immunol. 2023;151:361–70.

    Article  CAS  PubMed  Google Scholar 

  70. Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc. 2021;80:37–49.

    Article  CAS  PubMed  Google Scholar 

  71. Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19:77–94.

    Article  CAS  PubMed  Google Scholar 

  72. de Theije CG, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J, Knol J, et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun. 2014;37:197–206.

    Article  PubMed  Google Scholar 

  73. Osman A, Mervosh NL, Strat AN, Euston TJ, Zipursky G, Pollak RM, et al. Acetate supplementation rescues social deficits and alters transcriptional regulation in prefrontal cortex of Shank3 deficient mice. Brain Behav Immun. 2023;114:311–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee YM, Mu A, Wallace M, Gengatharan JM, Furst AJ, Bode L, et al. Microbiota control of maternal behavior regulates early postnatal growth of offspring. Sci Adv. 2021;7:eabe6563.

  75. Morais LH, Schreiber HLT, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19:241–55.

    Article  CAS  PubMed  Google Scholar 

  76. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell. 2016;167:915–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leclercq S, Le Roy T, Furgiuele S, Coste V, Bindels LB, Leyrolle Q, et al. Gut microbiota-induced changes in beta-hydroxybutyrate metabolism are linked to altered sociability and depression in alcohol use disorder. Cell Rep. 2020;33:108238.

    Article  CAS  PubMed  Google Scholar 

  78. Vicentini FA, Keenan CM, Wallace LE, Woods C, Cavin JB, Flockton AR, et al. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome. 2021;9:210.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shi H, Ge X, Ma X, Zheng M, Cui X, Pan W, et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome. 2021;9:223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ahmed H, Leyrolle Q, Koistinen V, Karkkainen O, Laye S, Delzenne N, et al. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes. 2022;14:2102878.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sun W, Xie G, Jiang X, Khaitovich P, Han D, Liu X. Epigenetic regulation of human-specific gene expression in the prefrontal cortex. BMC Biol. 2023;21:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gomes TM, Dias da Silva D, Carmo H, Carvalho F, Silva JP. Epigenetics and the endocannabinoid system signaling: an intricate interplay modulating neurodevelopment. Pharmacol Res. 2020;162:105237.

    Article  CAS  PubMed  Google Scholar 

  83. Jeong S, Chokkalla AK, Davis CK, Vemuganti R. Post-stroke depression: epigenetic and epitranscriptomic modifications and their interplay with gut microbiota. Mol Psychiatry. 2023;28:4044–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pan W-H, Sommer F, Falk-Paulsen M, Ulas T, Best L, Fazio A, et al. Exposure to the gut microbiota drives distinct methylome and transcriptome changes in intestinal epithelial cells during postnatal development. Genome Med. 2018;10:27.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Takeuchi T, Kubota T, Nakanishi Y, Tsugawa H, Suda W, Kwon AT, et al. Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature. 2023;621:389–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li Y, Luo ZY, Hu YY, Bi YW, Yang JM, Zou WJ, et al. The gut microbiota regulates autism-like behavior by mediating vitamin B(6) homeostasis in EphB6-deficient mice. Microbiome. 2020;8:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rosario D, Bidkhori G, Lee S, Bedarf J, Hildebrand F, Le Chatelier E, et al. Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson’s disease. Cell Rep. 2021;34:108807.

    Article  CAS  PubMed  Google Scholar 

  89. Wang X, Li Y, Chen W, Shi H, Eren AM, Morozov A, et al. Transcriptome-wide reprogramming of N6-methyladenosine modification by the mouse microbiome. Cell Res. 2019;29:167–70.

    Article  CAS  PubMed  Google Scholar 

  90. Sun Z, Lee-Sarwar K, Kelly RS, Lasky-Su JA, Litonjua AA, Weiss ST, et al. Revealing the importance of prenatal gut microbiome in offspring neurodevelopment in humans. eBioMedicine. 2023;90:104491.

  91. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen S, Zhang L, Li M, Zhang Y, Sun M, Wang L, et al. Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis. Nat Commun. 2022;13:1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yshii L, Pasciuto E, Bielefeld P, Mascali L, Lemaitre P, Marino M, et al. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat Immunol. 2022;23:878–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brown EM, Kenny DJ, Xavier RJ. Gut microbiota regulation of T cells during inflammation and autoimmunity. Annu Rev Immunol. 2019;37:599–624.

    Article  CAS  PubMed  Google Scholar 

  95. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22:1187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bostick JW, Schonhoff AM, Mazmanian SK. Gut microbiome-mediated regulation of neuroinflammation. Curr Opin Immunol. 2022;76:102177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xie K, Wang C, Scifo E, Pearson B, Ryan D, Henzel K, et al. Intermittent fasting boosts sexual behavior by limiting the central availability of tryptophan and serotonin. Cell Metab. 2025;37:1189–205.e7.

  99. O’Donnell MP, Fox BW, Chao PH, Schroeder FC, Sengupta P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature. 2020;583:415–20.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Miyauchi E, Kim SW, Suda W, Kawasumi M, Onawa S, Taguchi-Atarashi N, et al. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature. 2020;585:102–6.

    Article  CAS  PubMed  Google Scholar 

  101. Mishra A, Lai GC, Yao LJ, Aung TT, Shental N, Rotter-Maskowitz A, et al. Microbial exposure during early human development primes fetal immune cells. Cell. 2021;184:3394–3409 e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim JE, Li B, Fei L, Horne R, Lee D, Loe AKH, et al. Gut microbiota promotes stem cell differentiation through macrophage and mesenchymal niches in early postnatal development. Immunity. 2023;56:2175.

    Article  CAS  PubMed  Google Scholar 

  103. Renz H, Skevaki C. Early life microbial exposures and allergy risks: opportunities for prevention. Nat Rev Immunol. 2021;21:177–91.

    Article  CAS  PubMed  Google Scholar 

  104. Wang T, Chen B, Luo M, Xie L, Lu M, Lu X, et al. Microbiota-indole 3-propionic acid-brain axis mediates abnormal synaptic pruning of hippocampal microglia and susceptibility to ASD in IUGR offspring. Microbiome. 2023;11:245.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Thomas RH, Meeking MM, Mepham JR, Tichenoff L, Possmayer F, Liu S, et al. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders. J Neuroinflammation. 2012;9:153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Berger S, Ronovsky M, Horvath O, Berger A, Pollak DD. Impact of maternal immune activation on maternal care behavior, offspring emotionality and intergenerational transmission in C3H/He mice. Brain Behav Immun. 2018;70:131–40.

    Article  CAS  PubMed  Google Scholar 

  107. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hoyles L, Pontifex MG, Rodriguez-Ramiro I, Anis-Alavi MA, Jelane KS, Snelling T, et al. Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. Microbiome. 2021;9:235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Danhof HA, Lee J, Thapa A, Britton RA, Di Rienzi SC. Microbial stimulation of oxytocin release from the intestinal epithelium via secretin signaling. Gut Microbes. 2023;15:2256043.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Guzzardi MA, Ederveen THA, Rizzo F, Weisz A, Collado MC, Muratori F, et al. Maternal pre-pregnancy overweight and neonatal gut bacterial colonization are associated with cognitive development and gut microbiota composition in pre-school-age offspring. Brain Behav Immun. 2022;100:311–20.

    Article  CAS  PubMed  Google Scholar 

  111. Xu M, Zu P, Ma SS, Wang HX, Jiang N, Bian JF, et al. Variations in executive function in toddlers after exposure to pre-pregnancy overweight and obesity and the mediating role of inflammation in a longitudinal pregnancy cohort study. Brain Behav Immun. 2025;130:106075.

    Article  CAS  PubMed  Google Scholar 

  112. Tabouy L, Getselter D, Ziv O, Karpuj M, Tabouy T, Lukic I, et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav Immun. 2018;73:310–9.

    Article  PubMed  Google Scholar 

  113. Schulfer AF, Battaglia T, Alvarez Y, Bijnens L, Ruiz VE, Ho M, et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat Microbiol. 2018;3:234–42.

    Article  CAS  PubMed  Google Scholar 

  114. Yang S, Li W, Challis JR, Reid G, Kim SO, Bocking AD. Probiotic Lactobacillus rhamnosus GR-1 supernatant prevents lipopolysaccharide-induced preterm birth and reduces inflammation in pregnant CD-1 mice. Am J Obstet Gynecol. 2014;211:44.e1–44.e12.

    Article  CAS  PubMed  Google Scholar 

  115. Kong XJ, Liu J, Liu K, Koh M, Sherman H, Liu S, et al. Probiotic and oxytocin combination therapy in patients with autism spectrum disorder: a randomized, double-blinded, placebo-controlled pilot trial. Nutrients. 2021;13:1552.

  116. He Z, Li W, Yuan W, He Y, Xu J, Yuan C, et al. Lactobacillus reuteri inhibits Staphylococcus aureus-induced mastitis by regulating oxytocin releasing and gut microbiota in mice. FASEB J. 2024;38:e23383.

    Article  CAS  PubMed  Google Scholar 

  117. Carson KE, Alvarez J, Mackley JQ, Travagli RA, Browning KN. Perinatal high-fat diet exposure alters oxytocin and corticotropin releasing factor inputs onto vagal neurocircuits controlling gastric motility. J Physiol. 2023;601:2853–75.

    Article  CAS  PubMed  Google Scholar 

  118. Yuan L, Liu S, Bai X, Gao Y, Liu G, Wang X, et al. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J Neuroinflammation. 2016;13:77.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Jiang J, Zou Y, Xie C, Yang M, Tong Q, Yuan M, et al. Oxytocin alleviates cognitive and memory impairments by decreasing hippocampal microglial activation and synaptic defects via OXTR/ERK/STAT3 pathway in a mouse model of sepsis-associated encephalopathy. Brain Behav Immun. 2023;114:195–213.

    Article  CAS  PubMed  Google Scholar 

  120. Lindsay KL, Brennan L, Kennelly MA, Maguire OC, Smith T, Curran S, et al. Impact of probiotics in women with gestational diabetes mellitus on metabolic health: a randomized controlled trial. Am J Obstet Gynecol. 2015;212:496 e1–11.

    Article  PubMed  Google Scholar 

  121. Wu Y, Zhang G, Wang Y, Wei X, Liu H, Zhang L, et al. A review on maternal and infant microbiota and their implications for the prevention and treatment of allergic diseases. Nutrients. 2023;15:2483.

  122. Xiang Q, Yan X, Shi W, Li H, Zhou K. Early gut microbiota intervention in premature infants: application perspectives. J Adv Res. 2023;51:59–72.

    Article  PubMed  Google Scholar 

  123. Hudobenko J, Di Gesu CM, Mooz PR, Petrosino J, Putluri N, Ganesh BP, et al. Maternal dysbiosis produces long-lasting behavioral changes in offspring. Mol Psychiatry. 2024;30:1847–58.

  124. Taylor BL, Woodfall GE, Sheedy KE, O’Riley ML, Rainbow KA, Bramwell EL, et al. Effect of probiotics on metabolic outcomes in pregnant women with gestational diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2017;9:461.

  125. Chao J, Tan Z, Li Z, Xu C. The role of the microbiota-gut-brain axis in perinatal depression: novel insights for treatment. Curr Neuropharmacol. 2025 https://doi.org/10.2174/011570159X380460250710061340.

  126. Zuccotti G, Meneghin F, Aceti A, Barone G, Callegari ML, Di Mauro A, et al. Probiotics for prevention of atopic diseases in infants: systematic review and meta-analysis. Allergy. 2015;70:1356–71.

    Article  CAS  PubMed  Google Scholar 

  127. Brosseau C, Selle A, Duval A, Misme-Aucouturier B, Chesneau M, Brouard S, et al. Prebiotic supplementation during pregnancy modifies the gut microbiota and increases metabolites in amniotic fluid, driving a tolerogenic environment in utero. Front Immunol. 2021;12:712614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jones JM, Reinke SN, Mousavi-Derazmahalleh M, Garssen J, Jenmalm MC, Srinivasjois R, et al. Maternal prebiotic supplementation during pregnancy and lactation modifies the microbiome and short chain fatty acid profile of both mother and infant. Clin Nutr. 2024;43:969–80.

    Article  CAS  PubMed  Google Scholar 

  129. Paul HA, Collins KH, Nicolucci AC, Urbanski SJ, Hart DA, Vogel HJ, et al. Maternal prebiotic supplementation reduces fatty liver development in offspring through altered microbial and metabolomic profiles in rats. FASEB J. 2019;33:5153–67.

    Article  CAS  PubMed  Google Scholar 

  130. Renz H, Adkins BD, Bartfeld S, Blumberg RS, Farber DL, Garssen J, et al. The neonatal window of opportunity-early priming for life. J Allergy Clin Immunol. 2018;141:1212–4.

    Article  PubMed  Google Scholar 

  131. Mu J, Guo X, Zhou Y, Cao G. The effects of probiotics/synbiotics on glucose and lipid metabolism in women with gestational diabetes mellitus: a meta-analysis of randomized controlled trials. Nutrients. 2023;15:1375.

  132. Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14:635–48.

    Article  CAS  PubMed  Google Scholar 

  133. Ferro LE, Crowley LN, Bittinger K, Friedman ES, Decker JE, Russel K, et al. Effects of prebiotics, probiotics, and synbiotics on the infant gut microbiota and other health outcomes: a systematic review. Crit Rev Food Sci Nutr. 2023;63:5620–42.

    Article  CAS  PubMed  Google Scholar 

  134. Catassi G, Aloi M, Giorgio V, Gasbarrini A, Cammarota G, Ianiro G. The role of diet and nutritional interventions for the infant gut microbiome. Nutrients. 2024;16:400.

  135. Zhang W, Zhang Y, Zhao Y, Li L, Zhang Z, Hettinga K, et al. A comprehensive review on dietary polysaccharides as prebiotics, synbiotics, and postbiotics in infant formula and their influences on gut microbiota. Nutrients. 2024;16:4122.

  136. He P, Yu L, Tian F, Chen W, Zhang H, Zhai Q. Effects of probiotics on preterm infant gut microbiota across populations: a systematic review and meta-analysis. Adv Nutr. 2024;15:100233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Elhossiny RM, Elshahawy HH, Mohamed HM, Abdelmageed RI. Assessment of probiotic strain Lactobacillus acidophilus LB supplementation as adjunctive management of attention-deficit hyperactivity disorder in children and adolescents: a randomized controlled clinical trial. BMC Psychiatry. 2023;23:823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Colombo J, Zavaleta N, Kannass KN, Lazarte F, Albornoz C, Kapa LL, et al. Zinc supplementation sustained normative neurodevelopment in a randomized, controlled trial of Peruvian infants aged 6-18 months. J Nutr. 2014;144:1298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gharibeh N, Razaghi M, Vanstone CA, Sotunde OF, Glenn L, Mullahoo K, et al. Effect of vitamin D supplementation on bone mass in infants with 25-hydroxyvitamin D concentrations less than 50 nmol/L: a prespecified secondary analysis of a randomized clinical trial. JAMA Pediatr. 2023;177:353–62.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell. 2019;177:1600–1618 e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kang DW, Adams JB, Coleman DM, Pollard EL, Maldonado J, McDonough-Means S, et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep. 2019;9:5821.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dang H, Feng P, Zhang S, Peng L, Xing S, Li Y, et al. Maternal gut microbiota influence stem cell function in offspring. Cell Stem Cell. 2025;32:246–262 e8.

    Article  CAS  PubMed  Google Scholar 

  143. Wang Q, Yang Q, Liu X. The microbiota-gut-brain axis and neurodevelopmental disorders. Protein Cell. 2023;14:762–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Morton JT, Jin DM, Mills RH, Shao Y, Rahman G, McDonald D, et al. Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nat Neurosci. 2023;26:1208–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Park JC, Chang L, Kwon HK, Im SH. Beyond the gut: decoding the gut-immune-brain axis in health and disease. Cell Mol Immunol. 2025;22:1287–312.

  146. Saben JL, Boudoures AL, Asghar Z, Thompson A, Drury A, Zhang W, et al. Maternal metabolic syndrome programs mitochondrial dysfunction via germline changes across three generations. Cell Rep. 2016;16:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jones HN, Woollett LA, Barbour N, Prasad PD, Powell TL, Jansson T. High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J. 2009;23:271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen B, Du YR, Zhu H, Sun ML, Wang C, Cheng Y, et al. Maternal inheritance of glucose intolerance via oocyte TET3 insufficiency. Nature. 2022;605:761–6.

    Article  CAS  PubMed  Google Scholar 

  149. Liu X, Li X, Xia B, Jin X, Zou Q, Zeng Z, et al. High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell Metab. 2021;33:923–938 e6.

    Article  CAS  PubMed  Google Scholar 

  150. Govindarajah V, Sakabe M, Good S, Solomon M, Arasu A, Chen N, et al. Gestational diabetes in mice induces hematopoietic memory that affects the long-term health of the offspring. J Clin Invest. 2024;134:e169730.

  151. Ceasrine AM, Devlin BA, Bolton JL, Green LA, Jo YC, Huynh C, et al. Maternal diet disrupts the placenta-brain axis in a sex-specific manner. Nat Metab. 2022;4:1732–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Elgazzaz M, Berdasco C, Garai J, Baddoo M, Lu S, Daoud H, et al. Maternal Western diet programs cardiometabolic dysfunction and hypothalamic inflammation via epigenetic mechanisms predominantly in the male offspring. Mol Metab. 2024;80:101864.

    Article  CAS  PubMed  Google Scholar 

  153. Cerychova R, Bohuslavova R, Papousek F, Sedmera D, Abaffy P, Benes V, et al. Adverse effects of Hif1a mutation and maternal diabetes on the offspring heart. Cardiovasc Diabetol. 2018;17:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fidilio A, Grasso M, Caruso G, Musso N, Begni V, Privitera A, et al. Prenatal stress induces a depressive-like phenotype in adolescent rats: the key role of TGF-beta1 pathway. Front Pharmacol. 2022;13:1075746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bronson SL, Bale TL. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology. 2014;155:2635–46.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Gumusoglu SB, Fine RS, Murray SJ, Bittle JL, Stevens HE. The role of IL-6 in neurodevelopment after prenatal stress. Brain Behav Immun. 2017;65:274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chen HJ, Galley JD, Verosky BG, Yang FT, Rajasekera TA, Bailey MT, et al. Fetal CCL2 signaling mediates offspring social behavior and recapitulates effects of prenatal stress. Brain Behav Immun. 2024;115:308–18.

    Article  CAS  PubMed  Google Scholar 

  158. Zijlmans MA, Korpela K, Riksen-Walraven JM, de Vos WM, de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology. 2015;53:233–45.

    Article  PubMed  Google Scholar 

  159. Golubeva AV, Crampton S, Desbonnet L, Edge D, O’Sullivan O, Lomasney KW, et al. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology. 2015;60:58–74.

    Article  PubMed  Google Scholar 

  160. Gur TL, Shay L, Palkar AV, Fisher S, Varaljay VA, Dowd S, et al. Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring. Brain Behav Immun. 2017;64:50–58.

    Article  CAS  PubMed  Google Scholar 

  161. Garcia-Flores V, Romero R, Furcron AE, Levenson D, Galaz J, Zou C, et al. Prenatal maternal stress causes preterm birth and affects neonatal adaptive immunity in mice. Front Immunol. 2020;11:254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Brawner KM, Yeramilli VA, Kennedy BA, Patel RK, Martin CA. Prenatal stress increases IgA coating of offspring microbiota and exacerbates necrotizing enterocolitis-like injury in a sex-dependent manner. Brain Behav Immun. 2020;89:291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu MY, Wei LL, Zhu XH, Ding HC, Liu XH, Li H, et al. Prenatal stress modulates HPA axis homeostasis of offspring through dentate TERT independently of glucocorticoids receptor. Mol Psychiatry. 2023;28:1383–95.

    Article  CAS  PubMed  Google Scholar 

  164. Goldstein JM, Holsen L, Huang G, Hammond BD, James-Todd T, Cherkerzian S, et al. Prenatal stress-immune programming of sex differences in comorbidity of depression and obesity/metabolic syndrome. Dialogues Clin Neurosci. 2016;18:425–36.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Lian S, Li W, Wang D, Xu B, Guo X, Yang H, et al. Effects of prenatal cold stress on maternal serum metabolomics in rats. Life Sci. 2020;246:117432.

    Article  CAS  PubMed  Google Scholar 

  166. Tegethoff M, Greene N, Olsen J, Schaffner E, Meinlschmidt G. Stress during pregnancy and offspring pediatric disease: A National Cohort Study. Environ Health Perspect. 2011;119:1647–52.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Mughal MK, Giallo R, Arnold PD, Kehler H, Bright K, Benzies K, et al. Trajectories of maternal distress and risk of child developmental delays: findings from the All Our Families (AOF) pregnancy cohort. J Affect Disord. 2019;248:1–12.

    Article  PubMed  Google Scholar 

  168. Lin Y, Xu J, Huang J, Jia Y, Zhang J, Yan C, et al. Effects of prenatal and postnatal maternal emotional stress on toddlers’ cognitive and temperamental development. J Affect Disord. 2017;207:9–17.

    Article  PubMed  Google Scholar 

  169. Glynn LM, Howland MA, Sandman CA, Davis EP, Phelan M, Baram TZ, et al. Prenatal maternal mood patterns predict child temperament and adolescent mental health. J Affect Disord. 2018;228:83–90.

    Article  PubMed  Google Scholar 

  170. Furse S, Koulman A, Ozanne SE, Poston L, White SL, Meek CL. Altered lipid metabolism in obese women with gestational diabetes and associations with offspring adiposity. J Clin Endocrinol Metab. 2022;107:E2825–E2832.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gillman MW, Oakey H, Baghurst PA, Volkmer RE, Robinson JS, Crowther CA. Effect of treatment of gestational diabetes mellitus on obesity in the next generation. Diabetes Care. 2010;33:964–8.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wang S, Liu Y, Tam WH, Ching JYL, Xu W, Yan S, et al. Maternal gestational diabetes mellitus associates with altered gut microbiome composition and head circumference abnormalities in male offspring. Cell Host Microbe. 2024;32:1192–1206 e5.

    Article  CAS  PubMed  Google Scholar 

  173. Zhang C, Chen Y, Duan R, Zhang Y, Zheng H, Zhang J, et al. Preconception maternal gut dysbiosis affects enteric nervous system development and disease susceptibility in offspring via the GPR41-GDNF/RET/SOX10 signaling pathway. Imeta. 2025;4:e70012.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Coley-O’Rourke EJ, Lum GR, Pronovost GN, Yu LW, Ozcan E, Yu KB, et al. Murine maternal microbiome modifies adverse effects of protein undernutrition on offspring neurobehaviour. Nat Microbiol. 2025;10:1648–64.

    Article  PubMed  Google Scholar 

  175. Liu Z, Wu C, Sun Z, Lin Z, Sun Y, Amjad N, et al. Gut microbiota remodeling exacerbates neuroinflammation and cognitive dysfunction via the microbiota-gut-brain axis in prenatal VPA-exposed C57BL/6 mice offspring. Front Immunol. 2025;16:1633680.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Liu J, Liu C, Gao Z, Zhou L, Gao J, Luo Y, et al. GW4064 alters gut microbiota composition and counteracts autism-associated behaviors in BTBR T+tf/J Mice. Front Cell Infect Microbiol. 2022;12:911259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wang C, Chen W, Jiang Y, Xiao X, Zou Q, Liang J, et al. A synbiotic formulation of Lactobacillus reuteri and inulin alleviates ASD-like behaviors in a mouse model: the mediating role of the gut-brain axis. Food Funct. 2024;15:387–400.

    Article  CAS  PubMed  Google Scholar 

  178. Chen CM, Wu CC, Kim Y, Hsu WY, Tsai YC, Chiu SL. Enhancing social behavior in an autism spectrum disorder mouse model: investigating the underlying mechanisms of Lactiplantibacillus plantarum intervention. Gut Microbes. 2024;16:2359501.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Fourie NH, Wang D, Abey SK, Creekmore AL, Hong S, Martin CG, et al. Structural and functional alterations in the colonic microbiome of the rat in a model of stress induced irritable bowel syndrome. Gut Microbes. 2017;8:33–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23:314–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chevalier G, Siopi E, Guenin-Mace L, Pascal M, Laval T, Rifflet A, et al. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat Commun. 2020;11:6363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rautava S, Kainonen E, Salminen S, Isolauri E. Maternal probiotic supplementation during pregnancy and breast-feeding reduces the risk of eczema in the infant. J Allergy Clin Immunol. 2012;130:1355–60.

    Article  CAS  PubMed  Google Scholar 

  183. Kallio S, Jian C, Korpela K, Kukkonen AK, Salonen A, Savilahti E, et al. Early-life gut microbiota associates with allergic rhinitis during 13-year follow-up in a Finnish probiotic intervention cohort. Microbiol Spectr. 2024;12:e0413523.

    Article  PubMed  Google Scholar 

  184. Sass L, Bjarnadottir E, Stokholm J, Chawes B, Vinding RK, Mora-Jensen AC, et al. Fish oil supplementation in pregnancy and neurodevelopment in childhood—a randomized clinical trial. Child Dev. 2021;92:1624–35.

    Article  PubMed  Google Scholar 

  185. Lyons-Reid J, Derraik JGB, Kenealy T, Albert BB, Ramos Nieves JM, Monnard CR, et al. Impact of preconception and antenatal supplementation with myo-inositol, probiotics, and micronutrients on offspring BMI and weight gain over the first 2 years. BMC Med. 2024;22:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ma G, Chen Y, Liu X, Gao Y, Deavila JM, Zhu MJ, et al. Vitamin a supplementation during pregnancy in shaping child growth outcomes: a meta-analysis. Crit Rev Food Sci Nutr. 2023;63:12240–55.

    Article  CAS  PubMed  Google Scholar 

  187. Lee SR, Jeong SH, Mukae M, Kim SY, Ko JW, Kwun HJ, et al. Dietary supplementation with nicotinamide riboside improves fetal growth under hypoglycemia. J Nutr Biochem. 2023;116:109310.

    Article  CAS  PubMed  Google Scholar 

  188. Barbian ME, Owens JA, Naudin CR, Denning P, Patel RM, Jones RM. A high fiber diet or supplementation with Lactococcus lactis subspecies cremoris to pregnant mice confers protection against intestinal injury in adult offspring. Gut Microbes. 2024;16:2337317.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut. 2007;56:1522–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Samara J, Moossavi S, Alshaikh B, Ortega VA, Pettersen VK, Ferdous T, et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe. 2022;30:696–711 e5.

    Article  CAS  PubMed  Google Scholar 

  191. Van Rossum T, Haiss A, Knoll RL, Marissen J, Podlesny D, Pagel J, et al. Bifidobacterium and lactobacillus probiotics and gut dysbiosis in preterm infants: the PRIMAL randomized clinical trial. JAMA Pediatr. 2024;178:985–95.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Rojas MA, Lozano JM, Rojas MX, Rodriguez VA, Rondon MA, Bastidas JA, et al. Prophylactic probiotics to prevent death and nosocomial infection in preterm infants. Pediatrics. 2012;130:e1113–20.

    Article  PubMed  Google Scholar 

  193. Chi C, Fan Y, Li C, Li Y, Guo S, Li T, et al. Early gut microbiota colonisation of premature infants fed with breastmilk or formula with or without probiotics: a cohort study. Nutrients. 2021;13:4068.

  194. Lin HC, Hsu CH, Chen HL, Chung MY, Hsu JF, Lien RI, et al. Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics. 2008;122:693–700.

    Article  PubMed  Google Scholar 

  195. Hop le T, Berger J. Multiple micronutrient supplementation improves anemia, micronutrient nutrient status, and growth of Vietnamese infants: double-blind, randomized, placebo-controlled trial. J Nutr. 2005;135:660S–665S.

    Article  PubMed  Google Scholar 

  196. Taneja S, Upadhyay RP, Chowdhury R, Kurpad AV, Bhardwaj H, Kumar T, et al. Impact of supplementation with milk-cereal mix during 6-12 months of age on growth at 12 months: a 3-arm randomized controlled trial in Delhi, India. Am J Clin Nutr. 2022;115:83–93.

    Article  CAS  PubMed  Google Scholar 

  197. Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front Immunol. 2021;12:683022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Evans LW, Stratton MS, Ferguson BS. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat Prod Rep. 2020;37:653–76.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Peng B, Wang R, Zuo W, Liu H, Deng C, Jing X, et al. Distinct correlation network of clinical characteristics in suicide attempters having adolescent major depressive disorder with non-suicidal self-injury. Transl Psychiatry. 2024;14:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5:1417–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Shenhav L, Fehr K, Reyna ME, Petersen C, Dai DLY, Dai R, et al. Microbial colonization programs are structured by breastfeeding and guide healthy respiratory development. Cell. 2024;187:5431–5452.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was supported by Grants from the National Natural Science Foundation of China (32371213, 31900728), the Guangdong Basic and Applied Basic Research Foundation (2023A1515011743), the Shenzhen Science and Technology Program (JCYJ20250604183013017, KCXFZ20211020163549011, JCYJ20250604182920028), the Basic research of Shenzhen science and technology plan project (JCYJ20210324135211030), the Guangdong High-Level Hospital Construction Fund (LCYJ2022094), the Shenzhen Medical Research Funds (D2301002). The Figure 2 and Figure 4 were drawn by Figdraw.

Author information

Authors and Affiliations

Authors

Contributions

XAL conceived and designed the project. RXW, AA, and XYJ prepared the manuscript. XAL, DZC, YZ, JXF, and ZXC reviewed and edited the manuscript. All authors approved the manuscript.

Corresponding authors

Correspondence to De-zhi Cao or Xin-an Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Rx., Afzal, A., Jing, Xy. et al. Intergenerational effects of the microbiota on neurodevelopment: mechanisms and therapeutic perspectives. Acta Pharmacol Sin (2026). https://doi.org/10.1038/s41401-025-01693-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01693-6

Keywords

Search

Quick links