Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formyl peptide receptor 2 is a potential biomarker and therapeutic target for inflammatory bowel disease

Abstract

Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD), is characterized by limited treatment options and a therapeutic ceiling. Failure to resolve inflammation is the key driver of disease progression. Formyl peptide receptor 2 (FPR2/ALX), a pivotal mediator of inflammation resolution, has emerged as a promising therapeutic target. In this study, we investigated the expression patterns of FPR2 and clinical relevance in myeloid and lymphoid cells of active IBD patients. By analyzing transcriptomic and single-cell RNA-sequencing data from the GEO database, we revealed aberrant expression of FPR2 and its associated genes in colonic mucosa of IBD patients. We found that FPR2/ALX was highly expressed in the colonic mucosa of UC and CD patients compared to non-IBD controls, strongly correlating with alterations in the MAPK pathway and myeloid cell composition. Notably, high mucosal FPR2/ALX levels were associated with poor response to anti-tumor necrosis factor-α (TNF-α) agent infliximab, and were predictive of disease status (AUC = 0.9143). To assess therapeutic potential, we established a dextran sulfate sodium (DSS)-induced colitis model in wild-type and Fpr2-silenced mice. The mice were orally treated with FPR2/ALX modulators Quin-C1 (QC1) and Quin-C7 (QC7) for 7 days. We showed that oral administration of QC1 or QC7 significantly reduced disease active index (DAI) in wild-type mice, whereas the therapeutic effects were markedly impaired in Fpr2-silenced mice. We conclude that FPR2/ALX may serve as a potential biomarker and therapeutic target for IBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Elevated expression of FPR2 in the colonic mucosa of IBD patients.
Fig. 2: Gene expression and immune cell composition in the colon of UC patients.
Fig. 3: Gene expression and immune cell composition in the colonic mucosa of CD patients before and after infliximab treatment.
Fig. 4: Correlation between FPR2 and OSM in UC patients.
Fig. 5: Association of FPR2/ALX with anti-TNF-α treatment response.
Fig. 6: Effects of Fpr2 gene silencing on the anti-colitis efficacy of QC1 and QC7.

Similar content being viewed by others

References

  1. Chang JT. Pathophysiology of inflammatory bowel diseases. N Engl J Med. 2020;383:2652–64.

    Article  CAS  PubMed  Google Scholar 

  2. Mayberry J. The history of 5-ASA compounds and their use in ulcerative colitis – trailblazing discoveries in gastroenterology. J Gastrointestin Liver Dis. 2013;22:375–7.

    PubMed  Google Scholar 

  3. Chan HC, Ng SC. Emerging biologics in inflammatory bowel disease. J Gastroenterol. 2017;52:141–50.

    Article  CAS  PubMed  Google Scholar 

  4. Ho GT, Cartwright JA, Thompson EJ, Bain CC, Rossi AG. Resolution of inflammation and gut repair in IBD: translational steps towards complete mucosal healing. Inflamm Bowel Dis. 2020;26:1131–43.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Colombel JF, Panaccione R, Bossuyt P, Lukas M, Baert F, Vaňásek T, et al. Effect of tight control management on Crohn’s disease (CALM): a multicentre, randomised, controlled phase 3 trial. Lancet. 2017;390:2779–89.

    Article  PubMed  Google Scholar 

  6. Amiot A, Peyrin-Biroulet L. Current, new and future biological agents on the horizon for the treatment of inflammatory bowel diseases. Therap Adv Gastroenterol. 2015;8:66–82.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li J, Liu Z, Hu P, Wen Z, Cao Q, Zou X, et al. Indicators of suboptimal response to anti-tumor necrosis factor therapy in patients from China with inflammatory bowel disease: Results from the explore study. BMC Gastroenterol. 2022;22:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Panigrahy D, Gilligan MM, Serhan CN, Kashfi K. Resolution of inflammation: an organizing principle in biology and medicine. Pharmacol Ther. 2021;227:107879.

    Article  CAS  PubMed  Google Scholar 

  9. Perretti M, Leroy X, Bland EJ, Montero-Melendez T. Resolution pharmacology: opportunities for therapeutic innovation in inflammation. Trends Pharmacol Sci. 2015;36:737–55.

    Article  CAS  PubMed  Google Scholar 

  10. Doyle R, Godson C. Chapter 5 - Endogenous antiinflammatory and proresolving lipid mediators in renal disease. In: Goligorsky M, editor. Regenerative Nephrology (Second Edition). United States: Academic Press; 2022. p 55–67.

  11. Zhang H, Lu Y, Sun G, Teng F, Luo N, Jiang J, et al. The common promoter polymorphism rs11666254 downregulates FPR2/ALX expression and increases risk of sepsis in patients with severe trauma. Crit Care. 2017;21:171.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Prescott D, McKay DM. Aspirin-triggered lipoxin enhances macrophage phagocytosis of bacteria while inhibiting inflammatory cytokine production. Am J Physiol Gastrointest Liver Physiol. 2011;301:G487–97.

    Article  CAS  PubMed  Google Scholar 

  13. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37:773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nanamori M, Cheng X, Mei J, Sang H, Xuan Y, Zhou C, et al. A novel nonpeptide ligand for formyl peptide receptor-like 1. Mol Pharmacol. 2004;66:1213–22.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou C, Zhang S, Nanamori M, Zhang Y, Liu Q, Li N, et al. Pharmacological characterization of a novel nonpeptide antagonist for formyl peptide receptor-like 1. Mol Pharmacol. 2007;72:976–83.

    Article  CAS  PubMed  Google Scholar 

  17. Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 2017;12:1295–309.

    Article  CAS  PubMed  Google Scholar 

  18. Martín R, Chain F, Miquel S, Motta JP, Vergnolle N, Sokol H, et al. Using murine colitis models to analyze probiotics-host interactions. FEMS Microbiol Rev. 2017;41:S49–S70.

    Article  PubMed  Google Scholar 

  19. Paschalis A, Sheehan B, Riisnaes R, Rodrigues DN, Gurel B, Bertan C, et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur Urol. 2019;76:469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arijs I, De Hertogh G, Lemmens B, Van Lommel L, de Bruyn M, Vanhove W, et al. Effect of vedolizumab (anti-α4β7-integrin) therapy on histological healing and mucosal gene expression in patients with UC. Gut. 2018;67:43–52.

    Article  CAS  PubMed  Google Scholar 

  21. Arijs I, De Hertogh G, Lemaire K, Quintens R, Van Lommel L, Van Steen K, et al. Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment. PLoS ONE. 2009;4:e7984.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Filep JG, Sekheri M, El Kebir D. Targeting formyl peptide receptors to facilitate the resolution of inflammation. Eur J Pharmacol. 2018;833:339–48.

    Article  CAS  PubMed  Google Scholar 

  23. Lucas RM, Luo L, Stow JL. ERK1/2 in immune signalling. Biochem Soc Trans. 2022;50:1341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He HQ, Ye RD. The formyl peptide receptors: diversity of ligands and mechanism for recognition. Molecules. 2017;22:455.

    Article  PubMed  PubMed Central  Google Scholar 

  25. West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B, Buonocore S, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med. 2017;23:579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Planell N, Lozano JJ, Mora-Buch R, Masamunt MC, Jimeno M, Ordás I, et al. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut. 2013;62:967–76.

    Article  CAS  PubMed  Google Scholar 

  27. Martin JC, Chang C, Boschetti G, Ungaro R, Giri M, Grout JA, et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-tnf therapy. Cell. 2019;178:1493–508.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toedter G, Li K, Marano C, Ma K, Sague S, Huang CC, et al. Gene expression profiling and response signatures associated with differential responses to infliximab treatment in ulcerative colitis. Am J Gastroenterol. 2011;106:1272–80.

    Article  CAS  PubMed  Google Scholar 

  29. Pavlidis S, Monast C, Loza MJ, Branigan P, Chung KF, Adcock IM, et al. I_MDS: an inflammatory bowel disease molecular activity score to classify patients with differing disease-driving pathways and therapeutic response to anti-TNF treatment. PLoS Comput Biol. 2019;15:e1006951.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang WS, Wang JL, Wu W, Wang GF, Yan J, Liu Q, et al. Formyl peptide receptor 2 as a potential therapeutic target for inflammatory bowel disease. Acta Pharmacol Sin. 2023;44:19–31.

    Article  PubMed  Google Scholar 

  32. Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J Exp Med. 1997;185:1693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, et al. Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J Immunol. 2010;184:2611–9.

    Article  CAS  PubMed  Google Scholar 

  34. Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, et al. Corrections: anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J Immunol. 2011;186:2684.

    Article  Google Scholar 

  35. Chen K, Liu M, Liu Y, Yoshimura T, Shen W, Le Y, et al. Formyl peptide receptor 2 contributes to colonic epithelial homeostasis, inflammation, and tumorigenesis. J Clin Invest. 2013;123:1694–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Birkl D, O’Leary MN, Quiros M, Azcutia V, Schaller M, Reed M, et al. Formyl peptide receptor 2 regulates monocyte recruitment to promote intestinal mucosal wound repair. FASEB J. 2019;33:13632–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu C, Ghali S, Wang J, Shih DQ, Ortiz C, Mussatto CC, et al. CSA13 inhibits colitis-associated intestinal fibrosis via a formyl peptide receptor like-1 mediated HMG-CoA reductase pathway. Sci Rep. 2017;7:16351.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol. 2022;19:177–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C. Neutrophils: many ways to die. Front Immunol. 2021;12:631821.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Trilleaud C, Gauttier V, Biteau K, Girault I, Belarif L, Mary C, et al. Agonist anti-ChemR23 mAb reduces tissue neutrophil accumulation and triggers chronic inflammation resolution. Sci Adv. 2021;7:eabd1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Binienda A, Fichna J, Salaga M. Recent advances in inflammatory bowel disease therapy. Eur J Pharmacol Sci. 2020;155:105550.

    Article  CAS  Google Scholar 

  42. Mm M. Certain inflammatory changes in scabies stressed patients treated with permethrin 5%. Virol Immunol J. 2020;4:000229.

    Google Scholar 

  43. Yang WS, Liu Q, Li Y, Li GY, Lin S, Li J, et al. Oral FPR2/ALX modulators tune myeloid cell activity to ameliorate mucosal inflammation in inflammatory bowel disease. Acta Pharmacol Sin. 2025;46:1958–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Shanghai Hospital Development Center Foundation SHDC22024204 (ZPL), Shanghai Medicine and Health Development Foundation 20221128 (ZPL), and Shanghai Municipal Human Resources and Social Security Bureau EK00000861 (ZPL); the National Natural Science Foundation of China 82273961 (MWW), 82073904 (MWW), and 81872915 (MWW); STI2030-Major Project 2021ZD0203400 (QTZ) and Hainan Provincial Major Science and Technology Project ZDKJ2021028 (QTZ).

Author information

Authors and Affiliations

Authors

Contributions

WSY, ZPL, and MWW designed research; WSY contributed to methodology; WSY, XZW, and YL performed experiments; WSY, WW, GFW and QTZ analyzed the data; MWW and ZPL supervised the project; WSY, ZPL and MWW wrote the manuscript. All authors have reviewed and approved the manuscript.

Corresponding authors

Correspondence to Ming-Wei Wang or Zhi-ping Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Ws., Wang, Xz., Wu, W. et al. Formyl peptide receptor 2 is a potential biomarker and therapeutic target for inflammatory bowel disease. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01695-4

Keywords

Search

Quick links