Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryo-EM structures of GPR75 reveal an occluded orthosteric pocket challenging conventional drug discovery paradigms for an anti-obesity target

Abstract

The global obesity epidemic, affecting over 650 million adults, demands innovative therapeutics. GPR75 has emerged as a promising anti-obesity target, with genetic evidence linking loss-of-function variants to protection against obesity and type 2 diabetes. However, structural insights have remained elusive due to GPR75’s inherent expression and stabilization challenges. Here we present the cryo-EM structures of human GPR75 in apo and Gq-coupled states, achieved through advanced stabilization techniques including NanoBiT and molecular glue approaches. Our structures reveal unique architectural features: a completely collapsed extracellular domain eliminates the traditional orthosteric binding pocket, raising critical questions about previously reported small molecule ligands. GPR75 assumes active-like conformation in both apo and G protein complexed structures through unique molecular switches—the canonical DRY motif is replaced by HRL, abolishing the ionic lock, while a distinctive Lys134-Asp210 salt bridge stabilizes the active conformation without ligand binding. This dramatic structural divergence from conventional GPCRs necessitates alternative therapeutic strategies targeting allosteric sites or protein-protein interactions rather than orthosteric pockets. Our findings establish a crucial structural framework for developing next-generation anti-obesity therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structures of GPR75 and GPR75-Gq complex.
Fig. 2: Unique feature of GPR75.
Fig. 3: The active structure of GPR75.
Fig. 4: G protein coupling of GPR75.

Similar content being viewed by others

Data availability

The atomic coordinates of complex, GPR75-Gq complex, and Apo-GPR75BRIL are deposited at Protein Data Bank under access codes 9XQC, and 9XQN, respectively. Cryo-EM density maps of GPR75-Gq complex, and Apo-GPR75BRIL complex are deposited at Electron Microscopy Data Bank under access numbers EMD-67110, and EMD-67119, respectively.

References

  1. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402:203–34.

  2. Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavie CJ, et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021;143: e984–e1010.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abdelaal M, le Roux CW, Docherty NG. Morbidity and mortality associated with obesity. Ann Transl Med. 2017;5:161.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cho YY, Kim S, Kim P, Jo MJ, Park SE, Choi Y, et al. G-Protein-Coupled Receptor (GPCR) signaling and pharmacology in metabolism: physiology, mechanisms, and therapeutic potential. Biomolecules. 2015;15:291.

    Article  Google Scholar 

  5. Barella LF, Jain S, Pydi SP. G protein-coupled receptors: role in metabolic disorders. Front Endocrinol (Lausanne). 2022;13:984253.

    Article  PubMed  Google Scholar 

  6. Venniyoor A. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022;387:1433–4.

    Article  PubMed  Google Scholar 

  7. Aronne LJ, Horn DB, le Roux CW, Ho W, Falcon BL, Gomez Valderas E, et al. Tirzepatide as compared with semaglutide for the treatment of obesity. N Engl J Med. 2025;393:26–36.

    Article  CAS  PubMed  Google Scholar 

  8. Gorgojo-Martínez JJ, Mezquita-Raya P, Carretero-Gómez J, Castro A, Cebrián-Cuenca A, de Torres-Sánchez A, et al. Clinical recommendations to manage gastrointestinal adverse events in patients treated with Glp-1 receptor agonists: a multidisciplinary expert consensus. J Clin Med. 2022;12:145.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Akbari P, Gilani A, Sosina O, Kosmicki JA, Khrimian L, Fang YY, et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science. 2021;373:eabf8683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao Y, Chukanova M, Kentistou KA, Fairhurst-Hunter Z, Siegert AM, Jia RY, et al. Protein-truncating variants in BSN are associated with severe adult-onset obesity, type 2 diabetes and fatty liver disease. Nat Genet. 2024;56:579–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hossain S, Gilani A, Pascale J, Villegas E, Diegisser D, Agostinucci K, et al. Gpr75-deficient mice are protected from high-fat diet-induced obesity. Obesity (Silver Spring). 2023;31:1024–37.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang Y, Xun Y, Zhang Z. Central regulation of feeding and body weight by ciliary GPR75. J Clin Invest. 2024;134:e182121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leeson-Payne A, Iyinikkel J, Malcolm C, Lam BYH, Sommer N, Dowsett GKC, et al. Loss of GPR75 protects against non-alcoholic fatty liver disease and body fat accumulation. Cell Metab. 2024;36:1076–87.

    Article  CAS  PubMed  Google Scholar 

  14. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32:1431–7.

    Article  CAS  PubMed  Google Scholar 

  15. Han J, Li J, Yao S, Wei Z, Jiang H, Xu T, et al. GPR75: advances, challenges in deorphanization, and potential as a novel drug target for disease treatment. Int J Mol Sci. 2025;26:4084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Atanes P, Ashik T, Persaud SJ. Obesity-induced changes in human islet G protein-coupled receptor expression: implications for metabolic regulation. Pharmacol Ther. 2021;228:107928.

    Article  CAS  PubMed  Google Scholar 

  17. Dashti MR, Gorbanzadeh F, Jafari-Gharabaghlou D, Farhoudi Sefidan Jadid M, Zarghami N. G protein-coupled receptor 75 (GPR75) as a novel molecule for targeted therapy of cancer and metabolic syndrome. Asian Pac J Cancer Prev. 2023;24:1817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu S, Jang W, Inoue A, Lambert NA. Constitutive G protein coupling profiles of understudied orphan GPCRs. PLoS One. 2021;16:e0247743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garcia V, Gilani A, Shkolnik B, Pandey V, Zhang FF, Dakarapu R, et al. 20-HETE signals through G-protein-coupled receptor GPR75 (Gq) to affect vascular function and trigger hypertension. Circ Res. 2017;120:1776–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021;596:590–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–32.

    Article  PubMed  Google Scholar 

  22. Adams PD, Gopal K, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J Synchrotron Radiat. 2004;11:53–5.

    Article  CAS  PubMed  Google Scholar 

  23. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.

    Article  CAS  PubMed  Google Scholar 

  24. He XH, You CZ, Jiang HL, Jiang Y, Xu HE, Cheng X. AlphaFold2 versus experimental structures: evaluation on G protein-coupled receptors. Acta Pharmacol Sin. 2023;44:1–7.

    Article  CAS  PubMed  Google Scholar 

  25. Pándy-Szekeres G, Caroli J, Mamyrbekov A, Kermani AA, Keserű GM, Kooistra AJ, et al. GPCRdb in 2023: state-specific structure models using AlphaFold2 and new ligand resources. Nucleic Acids Res. 2023;51:D395–D402.

    Article  PubMed  Google Scholar 

  26. Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, et al. Structure, function and drug discovery of GPCR signaling. Mol Biomed. 2023;4:46.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Duan J, Xu P, Luan X, Ji Y, He X, Song N, et al. Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature. 2022;609:854–9.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Schlimgen RR, Singh S, Tomani MP, Volkman BF, Zhang C. Molecular basis for chemokine recognition and activation of XCR1. Proc Natl Acad Sci USA. 2024;121:e2405732121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duan J, Xu P, Zhang H, Luan X, Yang J, He X, et al. Mechanism of hormone and allosteric agonist mediated activation of follicle stimulating hormone receptor. Nat Commun. 2023;14:519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu H, Deepak RNVK, Shiriaeva A, Gati C, Batyuk A, Hu H, et al. Molecular basis for lipid recognition by the prostaglandin D2 receptor CRTH2. Proc Natl Acad Sci USA. 2021;118:e2102813118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu J, Xu Y, Hou L, He X, Li Y, Zhao J, et al. Molecular basis of lipid and ligand regulation of prostaglandin receptor DP2. Proc Natl Acad Sci USA. 2024;121:e2403304121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu C, Xu Y, He Q, Li D, Duan J, Li C, et al. Ligand-induced activation and G protein coupling of prostaglandin F receptor. Nat Commun. 2023;14:2668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang Y, Zhang Z. Adopting GPR75 in treating obesity: unraveling the knowns and unknowns of this orphan GPCR. Trends Cell Biol. 2025;35:102–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The cryo-EM data were collected at the Shanghai Advanced Center for Electron Microscopy, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. The National Key R&D Program of China (2022YFA1302900 to WCY; 2022YFC2703105 to HEX); the National Natural Science Foundation of China (32301016 to CRW, 32130022, 82495184, 82121005 to HEX, 82404881 to QNY); National Key R&D Program “Strategic Scientific and Technological Innovation Cooperation” Key Project (2022YFE0203600) released by the Ministry of Science and Technology; CAS Strategic Priority Research Program (XDB37030103 to HEX); Shanghai Municipal Science and Technology Major Project (2019SHZDZX02 to HEX); Shanghai Municipal Science and Technology Major Project (HEX); Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB0830000 to HEX.

We thank Claude 4.5 (Anthropic) for assistance with manuscript editing and language refinement.

Author information

Authors and Affiliations

Authors

Contributions

ZNZ, CZY, and QNY contributed equally to this work. CZY expressed and purified the GPR75-Gq complexes and prepared cryo-EM samples. ZNZ expressed and purified the apo GPR75 complexes and prepared cryo-EM samples. QNY and WH collected cryo-EM data. QNY, CRW, and CZY performed cryo-EM data processing and image analysis. QNY and CRW built and refined the atomic models. JJW, JYX, ZYG, KW, WCY, and YWX provided experimental assistance and technical support. ZH, ML, and BS provided scientific advice and contributed to data analysis. HEX and CRW conceived and designed the project, supervised all aspects of the research, analyzed the data, and wrote the manuscript with input from all authors. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to H. Eric Xu or Can-rong Wu.

Ethics declarations

Competing interests

ZH, ML, and BS are employed by BioFront Therapeutics. HEX is one of the Associate Editors of APS and was not involved in the peer review or the decision making of the article. The authors declare no other competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Zn., You, Cz., Yuan, Qn. et al. Cryo-EM structures of GPR75 reveal an occluded orthosteric pocket challenging conventional drug discovery paradigms for an anti-obesity target. Acta Pharmacol Sin (2026). https://doi.org/10.1038/s41401-025-01720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01720-6

Search

Quick links