Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic 5-HT7R activation drives depressive phenotypes and synaptic dysfunction

Abstract

Selective serotonin reuptake inhibitors (SSRIs) are commonly used to treat depression, but their chronic use is associated with side effects and residual symptoms of depression. Both effects induced by SSRIs are mediated by serotonin receptor-dependent signaling pathways, yet the molecular mechanisms underlying these effects remain unclear. Here, we investigated the impact of chronic and acute activation of the 5-HT7 receptor (5-HT7R) using the selective agonist AGH-194 in male mice. Behavioral assessment revealed that chronic AGH-194 administration induced depressive-like effects in the novelty suppressed feeding test (NSFT), female urine sniffing test (FUST), and novel object location test (NOLT). After acute injection, depressive-like effects were observed only in NSFT. At the molecular level, AGH-194 administration activated matrix metalloproteinase 9 (MMP-9) through a 5-HT7R-Gαs signaling-dependent mechanism. Acute treatment induced transient activation, while chronic treatment led to prolonged enzymatic activity, accompanied by a reduction in the expression of the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in the hippocampus. At the cellular level, acute but not chronic AGH-194 treatment induced a shift toward more juvenile dendritic spine morphology in the CA1 and dentate gyrus (DG) regions of the hippocampus, along with an increase in dendritic spine density in DG. Electrophysiological recordings demonstrated that acute AGH-194 administration enhanced hippocampal excitability by increasing population spike amplitude in CA1. Chronic AGH-194 treatment further modulated short-term plasticity, increasing both population spike and extracellular field potential paired-pulse ratios (PS-PPR and EPSP-PPR) in CA1, while also enhancing the maximum EPSP slope amplitude. These findings provide novel evidence that chronic 5-HT7R activation can induce depressive-like behaviors in male mice, potentially through sustained MMP-9 activation and alterations in synaptic plasticity. Understanding the molecular and electrophysiological consequences of selective 5-HT7R stimulation may provide insights into receptor-specific mechanisms that could contribute to SSRI-induced side effects, thereby contributing to the development of improved antidepressant strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Specific and dose-dependent activation of 5-HT7R mediated Gαs signaling by AGH-194.
Fig. 2: Time-dependent activation of MMP-9 and the role of Gαs in AGH-194-induced MMP-9 signaling.
Fig. 3: Behavioral effects of acute and chronic AGH-194 treatment.
Fig. 4: Activation of 5-HT7R with AGH-194 leads to dendritic spine elongation in the CA1 and DG subregion of the hippocampus.
Fig. 5: Chronic activation of 5-HT7R with AGH-194 does not alter dendritic spine morphology or density in the CA1 and DG subregions of the hippocampus.
Fig. 6: Chronic AGH-194 administration reduces hippocampal expression of total GluA1.
Fig. 7: Electrophysiological effects of single AGH-194 administration on PS (a-e) and EPSP (f-j) recorded in the hippocampal CA1 area.
Fig. 8: Electrophysiological effects of repeated AGH-194 administration on PS (a-e) and EPSP (f-j) recorded in the hippocampal CA1 area.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article or are available from the corresponding author upon reasonable request.

References

  1. Millan M, Marin P, Bockaert J, Mannourylacour C. Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends Pharmacol Sci. 2008;29:454–64.

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Lin WW, Wu N, Wang SY, Chen MZ, Lin ZH, et al. Structural insight into the serotonin (5-HT) receptor family by molecular docking, molecular dynamics simulation and systems pharmacology analysis. Acta Pharmacol Sin. 2019;40:1138–56.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem. 1993;268:23422–6.

    Article  CAS  PubMed  Google Scholar 

  4. Guseva D, Wirth A, Ponimaskin E. Cellular mechanisms of the 5-HT7 receptor-mediated signaling. Front Behav Neurosci. 2014;8:306.

  5. Liu B, Chu S, Liu T, Song J, Ma Z, Gu X, Xia T. Effects of 5-HT7 receptors on circadian rhythm of mice anesthetized with isoflurane. Chronobiol Int. 2021;38:38–45.

    Article  CAS  PubMed  Google Scholar 

  6. Santello M, Bisco A, Nevian NE, Lacivita E, Leopoldo M, Nevian T. The brain-penetrant 5-HT7 receptor agonist LP-211 reduces the sensory and affective components of neuropathic pain. Neurobiol Dis. 2017;106:214–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takeda K, Tsuji M, Miyagawa K, Takeda H. 5-HT7 receptor-mediated fear conditioning and possible involvement of extracellular signal-regulated kinase. Neurosci Lett. 2017;638:69–75.

    Article  CAS  PubMed  Google Scholar 

  8. Żmudzka E, Sałaciak K, Sapa J, Pytka K. Serotonin receptors in depression and anxiety: insights from animal studies. Life Sci. 2018;210:106–24.

    Article  PubMed  Google Scholar 

  9. Fukuyama K, Motomura E, Okada M. Therapeutic potential and limitation of serotonin type 7 receptor modulation. Int J Mol Sci. 2023;24:2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao S, Xie X, Fan L, Zhang DΕ. Efficacy and safety of vortioxetine (Lu AA21004) in the treatment of adult patients with major depressive disorder: A systematic review and a meta‑analysis of randomized controlled trials. Exp Ther Med. 2023;26:1–10.

    Article  Google Scholar 

  11. Krupa AJ, Wojtasik-Bakalarz K, Siwek M. Vortioxetine – pharmacological properties and use in mood disorders. The current state of knowledge. Psychiatr Pol. 2023;57:1109–26.

    Article  PubMed  Google Scholar 

  12. Santi NS, Biswal SB, Naik BN, Sahoo JP, Rath B. A randomized controlled trial comparing efficacy and safety of antidepressant monotherapy. Cureus. 2024;16:e59074.

    PubMed  PubMed Central  Google Scholar 

  13. Mnie-Filali O, Lambas-Senas L, Scarna H, Haddjeri N. Therapeutic potential of 5-HT7 receptors in mood disorders. Curr Drug Targets. 2009;10:1109–17.

    Article  CAS  PubMed  Google Scholar 

  14. Wesołowska A, Nikiforuk A, Stachowicz K, Tatarczyńska E. Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology. 2006;51:578–86.

    Article  PubMed  Google Scholar 

  15. Zajdel P, Canale V, Partyka A, Marciniec K, Kurczab R, Satała G, et al. Arylsulfonamide derivatives of (aryloxy)ethylpiperidines as selective 5-HT7 receptor antagonists and their psychotropic properties. Med Chem Commun. 2015;6:1272–7.

    Article  CAS  Google Scholar 

  16. Wesołowska A, Nikiforuk A, Stachowicz K. Potential anxiolytic and antidepressant effects of the selective 5-HT7 receptor antagonist SB 269970 after intrahippocampal administration to rats. Eur J Pharmacol. 2006;553:185–90.

    Article  PubMed  Google Scholar 

  17. Guscott M, Bristow LJ, Hadingham K, Rosahl TW, Beer MS, Stanton JA, et al. Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharmacology. 2005;48:492–502.

    Article  CAS  PubMed  Google Scholar 

  18. Hedlund PB, Huitron-Resendiz S, Henriksen SJ, Sutcliffe JG. 5-HT 7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol Psychiatry. 2005;58:831–7.

    Article  CAS  PubMed  Google Scholar 

  19. Wesołowska A, Tatarczyńska E, Nikiforuk A, Chojnacka-Wójcik E. Enhancement of the anti-immobility action of antidepressants by a selective 5-HT7 receptor antagonist in the forced swimming test in mice. Eur J Pharmacol. 2007;555:43–7.

    Article  PubMed  Google Scholar 

  20. Labus, J, Röhrs KF, Ackmann J, Varbanov H, Müller FE, Jia S, et al. Amelioration of Tau pathology and memory deficits by targeting 5-HT7 receptor. Prog Neurobiol. 101brenchat900 (2020) https://doi.org/10.1016/j.pneurobio.2020.101900.

  21. Brenchat A, Nadal X, Romero L, Ovalle S, Muro A, Sánchez-Arroyos R, et al. Pharmacological activation of 5-HT7 receptors reduces nerve injury-induced mechanical and thermal hypersensitivity. Pain. 2010;149:483–94.

    Article  CAS  PubMed  Google Scholar 

  22. Ciranna L, Catania MV. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders. Front Cell Neurosci. 2014;8:250.

  23. Hogendorf AS, Hogendorf A, Popiołek-Barczyk K, Ciechanowska A, Mika J, Satała G, et al. Fluorinated indole-imidazole conjugates: Selective orally bioavailable 5-HT7 receptor low-basicity agonists, potential neuropathic painkillers. Eur J Med Chem. 2019;170:261–75.

    Article  CAS  PubMed  Google Scholar 

  24. Bijata M, Labus J, Guseva D, Stawarski M, Butzlaff M, Dzwonek J, et al. Synaptic remodeling depends on signaling between serotonin receptors and the extracellular matrix. Cell Rep. 2017;19:1767–82.

    Article  CAS  PubMed  Google Scholar 

  25. Bijata M, Bączyńska E, Müller FE, Bijata K, Masternak J, Krzystyniak A, et al. Activation of the 5-HT7 receptor and MMP-9 signaling module in the hippocampal CA1 region is necessary for the development of depressive-like behavior. Cell Rep. 2022;38:110532.

    Article  CAS  PubMed  Google Scholar 

  26. Jakubowska K, Hogendorf AS, Gołda S, Jantas D. Neuroprotective and neurite outgrowth stimulating effects of new low-basicity 5-HT7 receptor agonists: in vitro study in human neuroblastoma SH-SY5Y Cells. Neurochem Res. 2024;49:2179–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hogendorf A, Hogendorf A, Satala G, Kurczab R, Bugno R, Staron J, et al. Imidazolyl-substituted indole derivatives binding 5-HT7 serotonin receptor and pharmaceutical compositions thereof. International patent application WO2018015558A1. 2018. https://patentscope.wipo.int.

  28. Malkesman O, Scattoni ML, Paredes D, Tragon T, Pearson B, Shaltiel G, et al. The female urine sniffing test: a novel approach for assessing reward-seeking behavior in rodents. Biol Psychiatry. 2010;67:864–71.

    Article  CAS  PubMed  Google Scholar 

  29. Bączyńska E, Zaręba-Kozioł M, Ruszczycki B, Krzystyniak A, Wójtowicz T, Bijata K, et al. Stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses. Neurobiol Stress. 2024;33:100683.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bijata M, Bączyńska E, Wlodarczyk J. A chronic unpredictable stress protocol to model anhedonic and resilient behaviors in C57BL/6J mice. STAR Protoc. 2022;3:101659.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Denninger JK, Smith BM, Kirby ED. Novel object recognition and object location behavioral testing in mice on a budget. J Vis Exp. 2018;:10.3791/58593. https://doi.org/10.3791/58593.

  32. Pochwat B, Misztak P, Masternak J, Bączyńska E, Bijata K, Roszkowska M, et al. Combined hyperforin and lanicemine treatment instead of ketamine or imipramine restores behavioral deficits induced by chronic restraint stress and dietary zinc restriction in mice. Front Pharmacol. 2022;13:933364.

  33. Tse WS, Pochwat B, Szewczyk B, Misztak P, Bobula B, Tokarski, K, et al. Restorative effect of NitroSynapsin on synaptic plasticity in an animal model of depression. Neuropharmacology. 2023;241:109729.

  34. Ting JT, Lee BR, Chong P, Soler-Llavina G, Cobbs C, Koch, C, et al. Preparation of acute brain slices using an optimized N-methyl-D-glucamine protective recovery method. J Vis Exp. 2018;132:53825.

  35. Chruścicka B, Burnat G, Brański P, Chorobik P, Lenda T, Marciniak M, et al. Tetracycline-based system for controlled inducible expression of group III metabotropic glutamate receptors. J Biomol Screen. 2015;20:350–8.

    Article  PubMed  Google Scholar 

  36. Chruścicka-Smaga B, Sowa-Kućma M, Pańczyszyn-Trzewik P, Bobula B, Korlatowicz A, Latocha K, et al. Evidence for functional interaction between the CB1 and the mGlu7 receptors mediated signaling in modulation of anxiety behavior and cognition. Life Sci. 2025;361:123313.

    Article  PubMed  Google Scholar 

  37. Degasperi A, Birtwistle MR, Volinsky N, Rauch J, Kolch W, Kholodenko BN, et al. Evaluating strategies to normalise biological replicates of Western blot data. PLoS One. 2014;9:e87293.

  38. Artigas F. Serotonin receptors involved in antidepressant effects. Pharmacol Ther. 2013;137:119–31.

    Article  CAS  PubMed  Google Scholar 

  39. Ferguson JM. SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry. 2001;3:22–7.

    PubMed  PubMed Central  Google Scholar 

  40. El Khamlichi C, Reverchon F, Hervouet-Coste N, Robin E, Chopin N, Deau E, et al. Serodolin, a β-arrestin–biased ligand of 5-HT7 receptor, attenuates pain-related behaviors. Proc Natl Acad Sci USA. 2022;119:e2118847119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mood and anxiety related phenotypes in mice: characterization using behavioral tests, Volume II SpringerLink. https://link.springer.com/book/10.1007/978-1-61779-313-4.

  42. Wang C, Zhang Y, Shao S, Cui S, Wan Y, Yi M. Ventral hippocampus modulates anxiety-like behavior in male but not female C57BL/6 J mice. Neuroscience. 2019;418:50–8.

    Article  PubMed  Google Scholar 

  43. Breviario S, Senserrich J, Florensa-Zanuy E, Garro-Martínez E, Díaz Á, Castro E, et al. Brain matrix metalloproteinase-9 activity is altered in the corticosterone mouse model of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2023;120:110624.

    Article  CAS  PubMed  Google Scholar 

  44. Balcer OM, Seager MA, Gleason SD, Li X, Rasmussen K, Maxwell JK, et al. Evaluation of 5-HT7 receptor antagonism for the treatment of anxiety, depression, and schizophrenia through the use of receptor-deficient mice. Behav Brain Res. 2019;360:270–8.

    Article  CAS  PubMed  Google Scholar 

  45. van der Kooij MA, Fantin M, Rejmak E, Grosse J, Zanoletti O, Fournier C, et al. Role for MMP-9 in stress-induced downregulation of nectin-3 in hippocampal CA1 and associated behavioural alterations. Nat Commun. 2014;5:4995.

    Article  PubMed  Google Scholar 

  46. Boulenger J-P. Residual symptoms of depression: clinical and theoretical implications. Eur Psychiatry. 2004;19:209–13.

    Article  PubMed  Google Scholar 

  47. Fang X, Jiang S, Wang J, Bai Y, Kim CS, Blake D, et al. Chronic unpredictable stress induces depression-related behaviors by suppressing AgRP neuron activity. Mol Psychiatry. 2021;26:2299–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yoshida Y, Miyazaki M, Yajima Y, Toyoda A. Subchronic and mild social defeat stress downregulates peripheral expression of sweet and umami taste receptors in male mice. Biochem Biophys Res Commun. 2021;579:116–21.

    Article  CAS  PubMed  Google Scholar 

  49. Leopoldo M, Lacivita E, De Giorgio P, Fracasso C, Guzzetti S, Caccia S, et al. Structural modifications of N -(1,2,3,4-Tetrahydronaphthalen-1-yl)-4-Aryl-1-piperazinehexanamides: influence on lipophilicity and 5-HT 7 receptor activity. Part III. J Med Chem. 2008;51:5813–22.

    Article  CAS  PubMed  Google Scholar 

  50. Atanes, P, Lacivita E, Rodríguez J, Brea J, Burgueño J, Vela JM, et al. The arylpiperazine derivatives N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide and N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide exert a long-lasting inhibition of human serotonin 5-HT7 receptor binding and cAMP signaling. Pharmacol Res Perspect. 2013;1:e00013. https://doi.org/10.1002/prp2.13.

  51. Zareifopoulos N, Papatheodoropoulos C. Effects of 5-HT-7 receptor ligands on memory and cognition. Neurobiol Learn Mem. 2016;136:204–9.

    Article  CAS  PubMed  Google Scholar 

  52. McIntyre RS, Lophaven S, Olsen CK. A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int J Neuropsychopharmacol. 2014;17:1557–67.

    Article  CAS  PubMed  Google Scholar 

  53. Vieta E, Florea I, Schmidt SN, Areberg J, Ettrup A. Intravenous vortioxetine to accelerate onset of effect in major depressive disorder: a 2-week, randomized, double-blind, placebo-controlled study. Int Clin Psychopharmacol. 2019;34:153–60.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Andreetta F, Carboni L, Grafton G, Jeggo R, Whyment AD, van den Top M, et al. Hippocampal 5-HT7 receptors signal phosphorylation of the GluA1 subunit to facilitate AMPA receptor mediated-neurotransmission in vitro and in vivo. Br J Pharmacol. 2016;173:1438–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de León-López CAM, Carretero-Rey M, Khan ZU. AMPA receptors in synaptic plasticity, memory function, and brain diseases. Cell Mol Neurobiol. 2025;45:14.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee H-K, Takamiya K, Han JS, Man H, Kim CH, Rumbaugh G, et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell. 2003;112:631–43.

    Article  CAS  PubMed  Google Scholar 

  57. Kallarackal AJ, Kvarta MD, Cammarata E, Jaberi L, Cai X, Bailey AM, et al. Chronic stress induces a selective decrease in AMPA receptor-mediated synaptic excitation at hippocampal temporoammonic-CA1 synapses. J Neurosci. 2013;33:15669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duric V, Banasr M, Stockmeier CA, Simen AA, Newton SS, Overholser JC, et al. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol. 2013;16:69–82.

    Article  CAS  PubMed  Google Scholar 

  59. Ma H, Li C, Wang J, Zhang X, Li M, Zhang R, et al. Amygdala-hippocampal innervation modulates stress-induced depressive-like behaviors through AMPA receptors. Proc Natl Acad Sci USA. 2021;118:e2019409118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Román-Albasini L, Díaz-Véliz G, Olave FA, Aguayo FI, García-Rojo G, Corrales WA, et al. Antidepressant-relevant behavioral and synaptic molecular effects of long-term fasudil treatment in chronically stressed male rats. Neurobiol Stress. 2020;13:100234.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Garry EM, Moss A, Rosie R, Delaney A, Mitchell R, Fleetwood-Walker SM. Specific involvement in neuropathic pain of AMPA receptors and adapter proteins for the GluR2 subunit. Mol Cell Neurosci. 2003;24:10–22.

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y, Wu J, Wu Z, Lin Q, Yue Y, Fang L. Regulation of AMPA receptors in spinal nociception. Mol Pain. 2010;6:5.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tokarski K, Zahorodna A, Bobula B, Hess G. 5-HT7 receptors increase the excitability of rat hippocampal CA1 pyramidal neurons. Brain Res. 2003;993:230–4.

    Article  CAS  PubMed  Google Scholar 

  64. Siwiec M, Kusek M, Sowa JE, Tokarski K, Hess G. 5-HT7 receptors increase the excitability of hippocampal CA1 pyramidal neurons by inhibiting the A-type potassium current. Neuropharmacology. 2020;177:108248.

    Article  CAS  PubMed  Google Scholar 

  65. Williamson R, Wheal HV. The contribution of AMPA and NMDA receptors to graded bursting activity in the hippocampal CA1 region in an acute in vitro model of epilepsy. Epilepsy Res. 1992;12:179–88.

    Article  CAS  PubMed  Google Scholar 

  66. Wiera G, Szczot M, Wojtowicz T, Lebida K, Koza P, Mozrzymas JW. Impact of matrix metalloproteinase-9 overexpression on synaptic excitatory transmission and its plasticity in rat CA3-CA1 hippocampal pathway. J Physiol Pharmacol. 2015;66:309–15.

    CAS  PubMed  Google Scholar 

  67. Vasefi MS, Yang K, Li J, Kruk JS, Heikkila JJ, Jackson MF, et al. Acute 5-HT7 receptor activation increases NMDA-evoked currents and differentially alters NMDA receptor subunit phosphorylation and trafficking in hippocampal neurons. Mol Brain. 2013;6:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kobe F, Guseva D, Jensen TP, Wirth A, Renner U, Hess D, et al. 5-HT7R/G12 signaling regulates neuronal morphology and function in an age-dependent manner. J Neurosci. 2012;32:2915–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Speranza L, Labus J, Volpicelli F, Guseva D, Lacivita E, Leopoldo M, et al. Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons. J Neurochem. 2017;141:647–61.

    Article  CAS  PubMed  Google Scholar 

  70. Guseva D, Holst K, Kaune B, Meier M, Keubler L, Glage S, et al. Serotonin 5-HT7 receptor is critically involved in acute and chronic inflammation of the gastrointestinal tract. Inflamm Bowel Dis. 2014;20:1516–29.

    Article  PubMed  Google Scholar 

  71. Yuksel TN, Yayla M, Halici Z, Cadirci E, Polat B, Kose D. Protective effect of 5-HT7 receptor activation against glutamate-induced neurotoxicity in human neuroblastoma SH-SY5Y cells via antioxidative and antiapoptotic pathways. Neurotoxicol Teratol. 2019;72:22–8.

    Article  CAS  PubMed  Google Scholar 

  72. Bijata M, Wirth A, Wlodarczyk J, Ponimaskin E. The interplay of serotonin 5-HT1A and 5-HT7 receptors in chronic stress. J Cell Sci. 2024;137:jcs262219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Science Centre (UMO- 2019/35/D/NZ4/02042). In addition, the functional characterization of AGH-194 was funded by the National Science Centre, Poland (2024/55/D/NZ7/02178). The pharmacokinetic study was supported by grant OPUS 2017/25/B/NZ7/02929 from the Polish National Science Centre. Some of the experiments were carried out with equipment cofinanced by the qLife Priority Research Area under the program. “Excellence Initiative—Research University” at Jagiellonian University.

Author information

Authors and Affiliations

Authors

Contributions

BP conceptualized the study, performed behavioral experiments, Western blot analyses, and contributed to data interpretation; he also wrote the first draft of the manuscript and participated in its editing. JM conducted behavioral experiments, performed AAV-based manipulations, and analyzed dendritic spine morphology. BB, MK, and KT were responsible for electrophysiological recordings and data analysis. BCS carried out in vitro assays. RW performed statistical analyses. AH provided resources (AGH-194), AJB provided resources (AGH-194). MW and MS performed pharmacokinetic study. BS and JT contributed to behavioral analysis and supervised tissue collection. KB conducted biochemical experiments. MB conceptualized the study, acquired funding, supervised the project, and was responsible for writing and editing the first draft of the manuscript.

Corresponding authors

Correspondence to Bartłomiej Pochwat or Monika Bijata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pochwat, B., Masternak, J., Bobula, B. et al. Chronic 5-HT7R activation drives depressive phenotypes and synaptic dysfunction. Acta Pharmacol Sin (2026). https://doi.org/10.1038/s41401-025-01722-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01722-4

Keywords

Search

Quick links