Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A sinomenine derivative protects life-threatening inflammatory injuries via covalently binding to a novel allosteric inhibition site of IRF3

Abstract

The severe inflammation associated with infectious or inflammatory diseases significantly contributes to mortality. Interferon regulatory factor 3 (IRF3) represents a potential anti-inflammatory target, but the development of IRF3 inhibitors has not yielded satisfactory results to date. In this study, we established a phenotype-based high-throughput screening system to conduct activity-guided hierarchical screening of clinical frequently used anti-inflammatory and anti-rheumatic herbal extracts and compounds. Employing a Gaussia-luciferase reporter system driven by the IFNB1 promoter, we identified sinomenine as a potent type I interferon (IFN) inhibitor from a set of 28 anti-inflammatory herbal products. Furthermore, among 24 synthesized sinomenine derivatives modified by various electrophilic groups, Sim-9 (2.5–10 μM) dose-dependently inhibited IFN responses triggered by TLRs, RLRs, and STING activation in mouse RAW264.7 cells and in human THP-1 cells, HT-29 cells and A549 cells. We demonstrated that Sim-9, by covalently binding to Cys222, induced a conformational change in the pLxIS motif-binding surface of IRF3, thus blocking its interaction with upstream adapters, including TRIF, MAVS and STING, and subsequent homodimerization of IRF3 itself, which were all essential for activation of type I IFN responses. In in vivo experiments, we showed that injection of Sim-9 (30, 60 mg/kg, i.p.) effectively protected against devastating inflammation in cecal ligation and puncture (CLP)-induced sepsis in mice, and improved cerulein-induced pancreatitis by inhibiting IRF3. Our study discovers Sim-9 as a novel covalent allosteric inhibitor of IRF3 and reveals that the pLxIS motif binding surface represents a previously uncharacterized druggable target for IRF3 activation, providing a promising therapeutic strategy for the treatment of severe inflammatory injuries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The discovery of small molecule compound with anti-type I IFN activities.
Fig. 2: Sim-9 inhibits the signal transduction of type I IFN.
Fig. 3: Sim-9 inhibits the dimerization and nuclear translocation of IRF3 in response to different stimulus.
Fig. 4: Sim-9 directly binds to IRF3.
Fig. 5: Sim-9 allosterically inhibits IRF3 by binding to Cys222.
Fig. 6: Sim-9 induces conformational changes of IRF3 by binding to Cys222.
Fig. 7: Sim-9 protects mice from CLP-induced sepsis.
Fig. 8: Sim-9 facilitates the recovery of acute pancreatitis.

Similar content being viewed by others

References

  1. Cavassani KA, Ishii M, Wen H, Schaller MA, Lincoln PM, Lukacs NW, et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med. 2008;205:2609–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gao M, Ha T, Zhang X, Liu L, Wang X, Kelley J, et al. Toll-like receptor 3 plays a central role in cardiac dysfunction during polymicrobial sepsis. Crit Care Med. 2012;40:2390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loo YM, Gale M Jr. Immune signaling by RIG-I-like receptors. Immunity. 2011;34:680–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Colli ML, Moore F, Gurzov EN, Ortis F, Eizirik DL. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet. 2010;19:135–46.

    Article  CAS  PubMed  Google Scholar 

  5. Crossley MP, Song C, Bocek MJ, Choi JH, Kousouros JN, Sathirachinda A, et al. R-loop-derived cytoplasmic RNA-DNA hybrids activate an immune response. Nature. 2023;613:187–94.

    Article  CAS  PubMed  Google Scholar 

  6. de Reuver R, Dierick E, Wiernicki B, Staes K, Seys L, De Meester E, et al. ADAR1 interaction with Z-RNA promotes editing of endogenous double-stranded RNA and prevents MDA5-dependent immune activation. Cell Rep. 2021;36:109500.

    Article  PubMed  Google Scholar 

  7. Lazear HM, Schoggins JW, Diamond MS. Shared and distinct functions of type I and type III interferons. Immunity. 2019;50:907–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu Q, Ren H, Li G, Wang D, Zhou Q, Wu J, et al. STING-mediated intestinal barrier dysfunction contributes to lethal sepsis. EBioMedicine. 2019;41:497–508.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hall J, Brault A, Vincent F, Weng S, Wang H, Dumlao D, et al. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay. PLoS One. 2017;12:e0184843.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang M, Sooreshjani MA, Mikek C, Opoku-Temeng C, Sintim HO. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. Future Med Chem. 2018;10:1301–17.

    Article  CAS  PubMed  Google Scholar 

  11. Haag SM, Gulen MF, Reymond L, Gibelin A, Abrami L, Decout A, et al. Targeting STING with covalent small-molecule inhibitors. Nature. 2018;559:269–73.

    Article  CAS  PubMed  Google Scholar 

  12. Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21:548–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Zhang HX, Sun YP, Liu ZX, Liu XS, Wang L, et al. Rig-I-/- mice develop colitis associated with downregulation of G alpha i2. Cell Res. 2007;17:858–68.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao Q, Manohar M, Wei Y, Pandol SJ, Habtezion A. STING signalling protects against chronic pancreatitis by modulating Th17 response. Gut. 2019;68:1827–37.

    Article  CAS  PubMed  Google Scholar 

  15. Huang C, Wang J, Zheng X, Chen Y, Wei H, Sun R, et al. Activation of TLR signaling in sensitization-recruited inflammatory monocytes attenuates OVA-induced allergic asthma. Front Immunol. 2018;9:2591.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reid-Adam J, Yang N, Song Y, Cravedi P, Li XM, Heeger P. Immunosuppressive effects of the traditional Chinese herb Qu Mai on human alloreactive T cells. Am J Transpl. 2013;13:1159–67.

    Article  CAS  Google Scholar 

  17. Pan MH, Chiou YS, Tsai ML, Ho CT. Anti-inflammatory activity of traditional Chinese medicinal herbs. J Tradit Complement Med. 2011;1:8–24.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moudgil KD, Berman BM. Traditional Chinese medicine: potential for clinical treatment of rheumatoid arthritis. Expert Rev Clin Immunol. 2014;10:819–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song H, Tan J, Ma R, Kennelly EJ, Tan Q. Anti-inflammatory constituents from Caulis trachelospermi. Planta Med. 2022;88:721–8.

    Article  CAS  PubMed  Google Scholar 

  20. Song CY, Xu YG, Lu YQ. Use of Tripterygium wilfordii Hook F for immune-mediated inflammatory diseases: progress and future prospects. J Zhejiang Univ Sci B. 2020;21:280–90.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao J, Liang G, Pan J, Yang W, Zeng L, Liu J. Efficacy of Duhuo Jisheng decoction for treating cold-dampness obstruction syndrome-type knee osteoarthritis: a pooled analysis. Biomed Res Int. 2022;2022:2350404.

    Article  PubMed  PubMed Central  Google Scholar 

  22. He FQ, Qiu BY, Li TK, Xie Q, Cui DJ, Huang XL, et al. Tetrandrine suppresses amyloid-β-induced inflammatory cytokines by inhibiting NF-κB pathway in murine BV2 microglial cells. Int Immunopharmacol. 2011;11:1220–5.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao B, Zhu W, Han X, Li X, Lu Y, Cao X, et al. Retraction: ethanol extract of Acanthopanax senticosus (Rupr. & Maxim.) Harms induces liver cancer cell apoptosis through inhibiting NF-κB. Transl Cancer Res. 2020;9:3783.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu K, Sun Y, Xue L, He J, Li F, Yin M, et al. Compounds with NO inhibitory effect from the rattan stems of sinomenium acutum, a kind of chinese folk medicine for treating rheumatoid arthritis. Chem Biodivers. 2022;19:e202200334.

  25. Lu X, Smaill JB, Patterson AV, Ding K. Discovery of cysteine-targeting covalent protein kinase inhibitors. J Med Chem. 2022;65:58–83.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao B, Shu C, Gao X, Sankaran B, Du F, Shelton CL, et al. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Proc Natl Acad Sci USA. 2016;113:E3403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dartora N, de Souza LM, Paiva SM, Scoparo CT, Iacomini M, Gorin PA, et al. Rhamnogalacturonan from Ilex paraguariensis: a potential adjuvant in sepsis treatment. Carbohydr Polym. 2013;92:1776–82.

    Article  CAS  PubMed  Google Scholar 

  28. Liang H, Song H, Zhai R, Song G, Li H, Ding X, et al. Corticosteroids for treating sepsis in adult patients: a systematic review and meta-analysis. Front Immunol. 2021;12:709155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu R, Qi H, Wang J, Wang Y, Cui L, Wen Y, et al. Ulinastatin activates the renin-angiotensin system to ameliorate the pathophysiology of severe acute pancreatitis. J Gastroenterol Hepatol. 2014;29:1328–37.

    Article  CAS  PubMed  Google Scholar 

  30. Wang SQ, Jiao W, Zhang J, Zhang JF, Tao YN, Jiang Q, et al. Ulinastatin in the treatment of severe acute pancreatitis: a single-center randomized controlled trial. World J Clin Cases. 2023;11:4601–11.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jiao S, Guan J, Chen M, Wang W, Li C, Wang Y, et al. Targeting IRF3 as a YAP agonist therapy against gastric cancer. J Exp Med. 2018;215:699–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ullah TR, Johansen MD, Balka KR, Ambrose RL, Gearing LJ, Roest J, et al. Pharmacological inhibition of TBK1/IKKε blunts immunopathology in a murine model of SARS-CoV-2 infection. Nat Commun. 2023;14:5666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Glanz A, Chakravarty S, Fan S, Chawla K, Subramanian G, Rahman T, et al. Autophagic degradation of IRF3 induced by the small-molecule auranofin inhibits its transcriptional and proapoptotic activities. J Biol Chem. 2021;297:101274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Su J, Guan B, Chen K, Feng Z, Guo K, Wang X, et al. Fucoxanthin attenuates inflammation via interferon regulatory factor 3 (IRF3) to improve sepsis. J Agric Food Chem. 2023;71:12497–510.

    Article  CAS  PubMed  Google Scholar 

  35. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347:aaa2630.

    Article  PubMed  Google Scholar 

  36. Andersen LL, Mørk N, Reinert LS, Kofod-Olsen E, Narita R, Jørgensen SE, et al. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J Exp Med. 2015;212:1371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen W, Lam SS, Srinath H, Jiang Z, Correia JJ, Schiffer CA, et al. Insights into interferon regulatory factor activation from the crystal structure of dimeric IRF5. Nat Struct Mol Biol. 2008;15:1213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Panne D, Maniatis T, Harrison SC. An atomic model of the interferon-beta enhanceosome. Cell. 2007;129:1111–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Escalante CR, Nistal-Villán E, Shen L, García-Sastre A, Aggarwal AK. Structure of IRF-3 bound to the PRDIII-I regulatory element of the human interferon-beta enhancer. Mol Cell. 2007;26:703–16.

    Article  CAS  PubMed  Google Scholar 

  40. Fohner AE, Greene JD, Lawson BL, Chen JH, Kipnis P, Escobar GJ, et al. Assessing clinical heterogeneity in sepsis through treatment patterns and machine learning. J Am Med Inf Assoc. 2019;26:1466–77.

    Article  Google Scholar 

  41. Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S. Recognizing sepsis as a global health priority—a WHO resolution. N Engl J Med. 2017;377:414–7.

    Article  PubMed  Google Scholar 

  42. Rubio I, Osuchowski MF, Shankar-Hari M, Skirecki T, Winkler MS, Lachmann G, et al. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect Dis. 2019;19:e422–e36.

    Article  CAS  PubMed  Google Scholar 

  43. Heipertz EL, Harper J, Goswami DG, Lopez CA, Nellikappallil J, Zamora R, et al. IRF3 signaling within the mouse stroma influences sepsis pathogenesis. J Immunol. 2021;206:398–409.

    Article  CAS  PubMed  Google Scholar 

  44. Walker WE, Booth CJ, Goldstein DR. TLR9 and IRF3 cooperate to induce a systemic inflammatory response in mice injected with liposome: DNA. Mol Ther. 2010;18:775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu N, Zhang X, Zhang X, Guan Y, He R, Xue E, et al. Inhibition of notch activity suppresses hyperglycemia-augmented polarization of macrophages to the M1 phenotype and alleviates acute pancreatitis. Clin Sci. 2022;136:455–71.

    Article  CAS  Google Scholar 

  46. Ye J, Huang A, Wang H, Zhang AMY, Huang X, Lan Q, et al. PRDM3 attenuates pancreatitis and pancreatic tumorigenesis by regulating inflammatory response. Cell Death Dis. 2020;11:187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peng Y, Yang Y, Li Y, Shi T, Xu N, Liu R, et al. Mitochondrial (mt)DNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling promotes pyroptosis of macrophages via interferon regulatory factor (IRF)7/IRF3 activation to aggravate lung injury during severe acute pancreatitis. Cell Mol Biol Lett. 2024;29:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Uemura K, Murakami Y, Hayashidani Y, Sudo T, Hashimoto Y, Ohge H, et al. Randomized clinical trial to assess the efficacy of ulinastatin for postoperative pancreatitis following pancreaticoduodenectomy. J Surg Oncol. 2008;98:309–13.

    Article  PubMed  Google Scholar 

  49. Horváth IL, Bunduc S, Fehérvári P, Váncsa S, Nagy R, Garmaa G, et al. The combination of ulinastatin and somatostatin reduces complication rates in acute pancreatitis: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2022;12:17979.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Abraham P, Rodriques J, Moulick N, Dharap S, Chafekar N, Verma PK, et al. Efficacy and safety of intravenous ulinastatin versus placebo along with standard supportive care in subjects with mild or severe acute pancreatitis. J Assoc Physicians India. 2013;61:535–8.

    PubMed  Google Scholar 

  51. Yanai H, Chiba S, Hangai S, Kometani K, Inoue A, Kimura Y, et al. Revisiting the role of IRF3 in inflammation and immunity by conditional and specifically targeted gene ablation in mice. Proc Natl Acad Sci USA. 2018;115:5253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Walker WE, Bozzi AT, Goldstein DR. IRF3 contributes to sepsis pathogenesis in the mouse cecal ligation and puncture model. J Leukoc Biol. 2012;92:1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dalskov L, Gad HH, Hartmann R. Viral recognition and the antiviral interferon response. EMBO J. 2023;42:e112907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Banerjee A, Zhang X, Yip A, Schulz KS, Irving AT, Bowdish D, et al. Positive selection of a serine residue in bat IRF3 confers enhanced antiviral protection. iScience. 2020;23:100958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Glanz A, Chakravarty S, Varghese M, Kottapalli A, Fan S, Chakravarti R, et al. Transcriptional and non-transcriptional activation, posttranslational modifications, and antiviral functions of interferon regulatory factor 3 and viral antagonism by the SARS-Coronavirus. Viruses. 2021;13:575.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82322075 to RPL; General project 82104365 to BX), the National Key Research and Development Program (2022YFC3502100), the Beijing “High-grade, Precision and Advanced” Project, and Beijing Key Laboratory for Basic and Development Research on Chinese Medicine.

Author information

Authors and Affiliations

Authors

Contributions

SL, investigation, data curation, formal analysis, methodology, visualization, and writing-original manuscript; MJL and QWW, investigation, data curation, methodology. WQQ, methodology and visualization; ZQD, methodology, data curation, and visualization; XJYL, methodology, writing-review and editing. JZB, methodology. HML, conceptualization, funding acquisition, project administration, and resources. BX and RPL, conceptualization, funding acquisition, project administration, and resources, supervise, writing-review and editing. All authors agree to be accountable for all aspects of work, ensuring integrity and accuracy.

Corresponding authors

Correspondence to Bing Xu, Hai-min Lei or Run-ping Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xu, B., Lu, Mj. et al. A sinomenine derivative protects life-threatening inflammatory injuries via covalently binding to a novel allosteric inhibition site of IRF3. Acta Pharmacol Sin (2026). https://doi.org/10.1038/s41401-025-01723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01723-3

Keywords

Search

Quick links