Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic regulation and posttranslational modifications of FXR: underlying mechanisms and implications in digestive diseases

Abstract

The incidence of digestive system diseases is increasing, with liver diseases, obesity, inflammatory bowel disease (IBD), and hepatoenteric cancers being prominent contributors to global morbidity and mortality. Targeting farnesoid X receptor (FXR) has emerged as a promising therapeutic strategy for various digestive disorders. FXR is a member of the nuclear receptor superfamily, is expressed primarily in the liver and small intestine, and is activated by bile acids (BAs). Beyond classical ligand-dependent activation, FXR activity is precisely modulated by epigenetic regulation and posttranslational modifications (PTMs), such as DNA methylation, histone methylation and acetylation, noncoding RNA regulation, phosphorylation, acetylation, SUMOylation, ubiquitination, O-glycosylation, methylation, sulfhydration, and poly(ADP-ribosyl)ation. Growing evidence reveals disease-associated alterations in FXR modification patterns, offering novel therapeutic perspectives for digestive pathologies. In this review, we comprehensively summarize the structure of FXR, its regulatory mechanisms through epigenetic modifications and PTMs, and its potential application in the treatment of digestive diseases.

The structure of FXR, its regulatory mechanisms through epigenetic modifications and PTMs, and its potential application in the treatment of digestive diseases. Upper: epigenetic regulation of FXR. Below: posttranslational modifications of FXR. OG O-glycosylation, P phosphorylation, SUMO SUMOylation, SSH sulfhydration, Ac acetylation, Me methylation, Ub ubiquitination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of four FXRα protein isoforms.
Fig. 2: Acetylation of FXR under physiological and pathological conditions.
Fig. 3: SUMO-ubiquitin activation-degradation pathway under pathological conditions.
Fig. 4: O-glycosylation of FXR.
Fig. 5: Enzymes that mediate the interplay between epigenetic modifications and posttranslational modifications (PTMs) of FXR.
Fig. 6: Variation in epigenetic modifications of FXR in colon cancer.
Fig. 7: Variation in epigenetic modifications and PTMs of FXR in liver diseases.

Similar content being viewed by others

References

  1. Cheng Z, Wang T, Jiao Y, Qi J, Zhang X, Zhou S, et al. Burden of digestive system diseases in China and its provinces during 1990-2019: Results of the 2019 Global Disease Burden Study. Chin Med J. 2024;137:2182–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Peery AF, Murphy CC, Anderson C, Jensen ET, Deutsch-Link S, Egberg MD, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: Update 2024. Gastroenterology. 2025;168:1000–24.

    Article  PubMed  Google Scholar 

  3. Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of liver disease: 2023 update. J Hepatol. 2023;79:516–37.

    Article  PubMed  Google Scholar 

  4. Wang C, Zhang X, Wang P, Yang X, Yu H, Xu W, et al. The role of obesity in mortality from digestive diseases in UK Biobank. Sci Rep. 2024;14:27126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ogbuji V, Gomez D’M, Paster IC, Irizarry VMT, McCormick K, Dennis LK, et al. Global burden of penile cancer: a review of health disparities for a rare disease. Urology. 2024;194:280–8.

    Article  PubMed  Google Scholar 

  6. Ding L, Yang L, Wang Z, Huang W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B. 2015;5:135–44.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jiang L, Zhang H, Xiao D, Wei H, Chen Y. Farnesoid X receptor (FXR): structures and ligands. Comput Struct Biotechnol J. 2021;19:2148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adorini L, Trauner M. FXR agonists in NASH treatment. J Hepatol. 2023;79:1317–31.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Chen K, Li F, Gu Z, Liu Q, He L, et al. Probiotic Lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology. 2020;71:2050–66.

    Article  CAS  PubMed  Google Scholar 

  10. Anderson KM, Gayer CP. The Pathophysiology of Farnesoid X Receptor (FXR) in the GI tract: inflammation, barrier function and innate immunity. Cells. 2021;10:3206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin S, Wang S, Wang P, Tang C, Wang Z, Chen L, et al. Bile acids and their receptors in regulation of gut health and diseases. Prog Lipid Res. 2023;89:101210.

    Article  CAS  PubMed  Google Scholar 

  12. Yu D, Lu Z, Wang R, Xiang Y, Li H, Lu J, et al. FXR agonists for colorectal and liver cancers, as a stand-alone or in combination therapy. Biochem Pharmacol. 2023;212:115570.

    Article  CAS  PubMed  Google Scholar 

  13. Cheung KCP, Ma J, Loiola RA, Chen X, Jia W. Bile acid-activated receptors in innate and adaptive immunity: targeted drugs and biological agents. Eur J Immunol. 2023;53:e2250299.

    Article  PubMed  Google Scholar 

  14. Fiorucci S, Zampella A, Ricci P, Distrutti E, Biagioli M. Immunomodulatory functions of FXR. Mol Cell Endocrinol. 2022;551:111650.

    Article  CAS  PubMed  Google Scholar 

  15. Panzitt K, Wagner M. FXR in liver physiology: multiple faces to regulate liver metabolism. Biochim Biophys Acta Mol Basis Dis. 2021;1867:166133.

    Article  CAS  PubMed  Google Scholar 

  16. Appelman MD, van der Veen SW, van Mil SWC. Post-translational modifications of FXR; implications for cholestasis and obesity-related disorders. Front Endocrinol. 2021;12:729828.

    Article  Google Scholar 

  17. Zhou M, Wang D, Li X, Cao Y, Yi C, Wiredu Ocansey DK, et al. Farnesoid-X receptor as a therapeutic target for inflammatory bowel disease and colorectal cancer. Front Pharmacol. 2022;13:1016836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiang D, Yang J, Liu L, Yu H, Gong X, Liu D. The regulation of tissue-specific farnesoid X receptor on genes and diseases involved in bile acid homeostasis. Biomed Pharmacother. 2023;168:115606.

    Article  CAS  PubMed  Google Scholar 

  19. Tian SY, Chen SM, Pan CX, Li Y. FXR: structures, biology, and drug development for NASH and fibrosis diseases. Acta Pharmacol Sin. 2022;43:1120–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Devarakonda S, Harp JM, Kim Y, Ozyhar A, Rastinejad F. Structure of the heterodimeric ecdysone receptor DNA-binding complex. EMBO J. 2003;22:5827–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Otte K, Kranz H, Kober I, Thompson P, Hoefer M, Haubold B, et al. Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol Cell Biol. 2003;23:864–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Panzitt K, Zollner G, Marschall HU, Wagner M. Recent advances on FXR-targeting therapeutics. Mol Cell Endocrinol. 2022;552:111678.

    Article  CAS  PubMed  Google Scholar 

  23. Vaquero J, Monte MJ, Dominguez M, Muntané J, Marin JJ. Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Biochem Pharmacol. 2013;86:926–39.

    Article  CAS  PubMed  Google Scholar 

  24. Garcia M, Holota H, De Haze A, Saru JP, Sanchez P, Battistelli E, et al. Alternative splicing is an FXRα loss-of-function mechanism and impacts energy metabolism in hepatocarcinoma cells. J Biol Chem. 2025;301:108022.

    Article  CAS  PubMed  Google Scholar 

  25. Anakk S, Dean AE. Fxr-alpha skips alternatively in liver metabolism. Gastroenterology. 2020;159:1655–7.

    Article  PubMed  Google Scholar 

  26. Chen X, Xu H, Shu X, Song CX. Mapping epigenetic modifications by sequencing technologies. Cell Death Differ. 2025;32:56–65.

    Article  CAS  PubMed  Google Scholar 

  27. Huang X, Zhu J, Wei T, Luo L, Li C, Zhao M. Epigenetic modifications in vitiligo. Clin Rev Allergy Immunol. 2025;68:39.

    Article  CAS  PubMed  Google Scholar 

  28. Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther. 2024;258:108640.

    Article  CAS  PubMed  Google Scholar 

  29. Oliva M, Demanelis K, Lu Y, Chernoff M, Jasmine F, Ahsan H, et al. DNA methylation QTL mapping across diverse human tissues provides molecular links between genetic variation and complex traits. Nat Genet. 2023;55:112–22.

    Article  CAS  PubMed  Google Scholar 

  30. Huang W, Li H, Yu Q, Xiao W, Wang DO, LncRNA-mediated DNA. methylation: an emerging mechanism in cancer and beyond. J Exp Clin Cancer Res. 2022;41:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang K, He Z, Jin G, Jin S, Du Y, Yuan S, et al. Targeting DNA methyltransferases for cancer therapy. Bioorg Chem. 2024;151:107652.

    Article  CAS  PubMed  Google Scholar 

  32. Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 2023;8:210.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang S, Zha L, Cui X, Yeh YT, Liu R, Jing J, et al. Epigenetic regulation of hepatic lipid metabolism by DNA methylation. Adv Sci. 2023;10:e2206068.

    Article  Google Scholar 

  34. Cabrerizo R, Castaño GO, Burgueño AL, Fernández Gianotti T, Gonzalez Lopez Ledesma MM, Flichman D, et al. Promoter DNA methylation of farnesoid X receptor and pregnane X receptor modulates the intrahepatic cholestasis of pregnancy phenotype. PLoS One. 2014;9:e87697.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zaffaroni G, Mannucci A, Koskenvuo L, de Lacy B, Maffioli A, Bisseling T, et al. Updated European guidelines for clinical management of familial adenomatous polyposis (FAP), MUTYH-associated polyposis (MAP), gastric adenocarcinoma, proximal polyposis of the stomach (GAPPS) and other rare adenomatous polyposis syndromes: a joint EHTG-ESCP revision. Br J Surg. 2024;111:znae070.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Selmin OI, Fang C, Lyon AM, Doetschman TC, Thompson PA, Martinez JD, et al. Inactivation of adenomatous polyposis coli reduces bile acid/farnesoid X receptor expression through Fxr gene CpG methylation in mouse colon tumors and human colon cancer cells. J Nutr. 2016;146:236–42.

    Article  CAS  PubMed  Google Scholar 

  37. Bailey AM, Zhan L, Maru D, Shureiqi I, Pickering CR, Kiriakova G, et al. FXR silencing in human colon cancer by DNA methylation and KRAS signaling. Am J Physiol Gastrointest Liver Physiol. 2014;306:G48–58.

    Article  CAS  PubMed  Google Scholar 

  38. Romagnolo DF, Donovan MG, Doetschman TC, Selmin OI. n-6 linoleic acid induces epigenetics alterations associated with colonic inflammation and cancer. Nutrients. 2019;11:171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ching T, Ha J, Song MA, Tiirikainen M, Molnar J, Berry MJ, et al. Genome-scale hypomethylation in the cord blood DNAs associated with early onset preeclampsia. Clin Epigenetics. 2015;7:21.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zaib S, Rana N, Khan I. Histone modifications and their role in epigenetics of cancer. Curr Med Chem. 2022;29:2399–411.

    Article  CAS  PubMed  Google Scholar 

  41. Du Y, He Z, Jin S, Jin G, Wang K, Yang F, et al. Targeting histone methylation and demethylation for non-alcoholic fatty liver disease. Bioorg Chem. 2024;151:107698.

    Article  CAS  PubMed  Google Scholar 

  42. Charidemou E, Kirmizis A. A two-way relationship between histone acetylation and metabolism. Trends Biochem Sci. 2024;49:1046–62.

    Article  CAS  PubMed  Google Scholar 

  43. Pathikonda S, Amirmahani F, Mathew D, Muthukrishnan SD. Histone acetyltransferases as promising therapeutic targets in glioblastoma resistance. Cancer Lett. 2024;604:217269.

    Article  CAS  PubMed  Google Scholar 

  44. Ma L, Lv J, Zhang A. Depletion of S-adenosylmethionine induced by arsenic exposure is involved in liver injury of rat through perturbing histone H3K36 trimethylation dependent bile acid metabolism. Environ Pollut. 2023;334:122228.

    Article  CAS  PubMed  Google Scholar 

  45. Yu J, Yang K, Zheng J, Zhao P, Xia J, Sun X, et al. Activation of FXR and inhibition of EZH2 synergistically inhibit colorectal cancer through cooperatively accelerating FXR nuclear location and upregulating CDX2 expression. Cell Death Dis. 2022;13:388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wan QL, Meng X, Dai W, Luo Z, Wang C, Fu X, et al. N6-methyldeoxyadenine and histone methylation mediate transgenerational survival advantages induced by hormetic heat stress. Sci Adv. 2021;7:eabc3026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Farias-Pereira R, Kim E, Park Y. Cafestol increases fat oxidation and energy expenditure in Caenorhabditis elegans via DAF-12-dependent pathway. Food Chem. 2020;307:125537.

    Article  CAS  PubMed  Google Scholar 

  48. García-Rodríguez JL, Barbier-Torres L, Fernández-Álvarez S, Gutiérrez-de Juan V, Monte MJ, Halilbasic E, et al. SIRT1 controls liver regeneration by regulating bile acid metabolism through farnesoid X receptor and mammalian target of rapamycin signaling. Hepatology. 2014;59:1972–83.

    Article  PubMed  Google Scholar 

  49. Gong J, Cong M, Wu H, Wang M, Bai H, Wang J, et al. P53/miR-34a/SIRT1 positive feedback loop regulates the termination of liver regeneration. Aging. 2023;15:1859–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li M, Zhang X, Lu Y, Meng S, Quan H, Hou P, et al. The nuclear translocation of transketolase inhibits the farnesoid receptor expression by promoting the binding of HDAC3 to FXR promoter in hepatocellular carcinoma cell lines. Cell Death Dis. 2020;11:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martino MTD, Tagliaferri P, Tassone P. MicroRNA in cancer therapy: breakthroughs and challenges in early clinical applications. J Exp Clin Cancer Res. 2025;44:126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. Int J Mol Sci. 2022;23:7167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dong R, Wang X, Wang L, Wang C, Huang K, Fu T, et al. Yangonin inhibits ethanol-induced hepatocyte senescence via miR-194/FXR axis. Eur J Pharmacol. 2021;890:173653.

    Article  CAS  PubMed  Google Scholar 

  54. Jiang M, Li F, Liu Y, Gu Z, Zhang L, Lee J, et al. Probiotic-derived nanoparticles inhibit ALD through intestinal miR194 suppression and subsequent FXR activation. Hepatology. 2023;77:1164–80.

    Article  PubMed  Google Scholar 

  55. Nie X, Liu H, Wei X, Li L, Lan L, Fan L, et al. miRNA-382-5p Suppresses the expression of farnesoid X receptor to promote progression of liver cancer. Cancer Manag Res. 2021;13:8025–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Diener C, Keller A, Meese E. The miRNA-target interactions: an underestimated intricacy. Nucleic Acids Res. 2024;52:1544–57.

    Article  CAS  PubMed  Google Scholar 

  57. Roberts TC. The MicroRNA biology of the mammalian nucleus. Mol Ther Nucleic Acids. 2014;3:e188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fan L, Lai R, Ma N, Dong Y, Li Y, Wu Q, et al. miR-552-3p modulates transcriptional activities of FXR and LXR to ameliorate hepatic glycolipid metabolism disorder. J Hepatol. 2021;74:8–19.

    Article  CAS  PubMed  Google Scholar 

  59. Herman AB, Tsitsipatis D, Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell. 2022;82:2252–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol. 2024;25:396–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen J, Wang R, Xiong F, Sun H, Kemper B, Li W, et al. Hammerhead-type FXR agonists induce an enhancer RNA Fincor that ameliorates nonalcoholic steatohepatitis in mice. eLife. 2024;13:RP91438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee EB, Lee VM, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci. 2011;13:38–50.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ma Y, Harris J, Li P, Cao H. Long noncoding RNAs-a new dimension in the molecular architecture of the bile acid/FXR pathway. Mol Cell Endocrinol. 2021;525:111191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Salovska B, Liu Y. Post-translational modification and phenotype. Proteomics. 2023;23:e2200535.

    Article  PubMed  Google Scholar 

  65. Gineste R, Sirvent A, Paumelle R, Helleboid S, Aquilina A, Darteil R, et al. Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity. Mol Endocrinol. 2008;22:2433–47.

    Article  CAS  PubMed  Google Scholar 

  66. Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 2009;10:392–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Balasubramaniyan N, Luo Y, Sun AQ, Suchy FJ. SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J Biol Chem. 2013;288:13850–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. J Exp Med. 2018;215:383–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Benhamed F, Filhoulaud G, Caron S, Lefebvre P, Staels B. Postic C. O-GlcNAcylation links ChREBP and FXR to glucose-sensing. Front Endocrinol. 2015;5:230.

    Article  Google Scholar 

  70. Balasubramaniyan N, Ananthanarayanan M, Suchy FJ. Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes. Am J Physiol Gastrointest Liver Physiol. 2012;302:G937–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu W, Cui C, Cui C, Chen Z, Zhang H, Cui Q, et al. Hepatocellular cystathionine γ lyase/hydrogen sulfide attenuates nonalcoholic fatty liver disease by activating farnesoid X receptor. Hepatology. 2022;76:1794–810.

    Article  CAS  PubMed  Google Scholar 

  72. Wang C, Zhang F, Wang L, Zhang Y, Li X, Huang K, et al. Poly(ADP-ribose) polymerase 1 promotes oxidative-stress-induced liver cell death via suppressing farnesoid X receptor α. Mol Cell Biol. 2013;33:4492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chem Soc Rev. 2022;51:5691–730.

    Article  CAS  PubMed  Google Scholar 

  74. Morgan JAM, Singh A, Kurz L, Nadler-Holly M, Ruwolt M, Ganguli S, et al. Extensive protein pyrophosphorylation revealed in human cell lines. Nat Chem Biol. 2024;20:1305–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shindo S, Kakizaki S, Sakaki T, Kawasaki Y, Sakuma T, Negishi M, et al. Phosphorylation of nuclear receptors: novelty and therapeutic implications. Pharmacol Ther. 2023;248:108477.

    Article  CAS  PubMed  Google Scholar 

  76. Negishi M, Kobayashi K, Sakuma T, Sueyoshi T. Nuclear receptor phosphorylation in xenobiotic signal transduction. J Biol Chem. 2020;295:15210–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yokobori K, Miyauchi Y, Williams JG, Negishi M. Phosphorylation of vaccinia-related kinase 1 at threonine 386 transduces glucose stress signal in human liver cells. Biosci Rep. 2020;40:BSR20200498.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hashiguchi T, Arakawa S, Takahashi S, Gonzalez FJ, Sueyoshi T, Negishi M. Phosphorylation of farnesoid X receptor at serine 154 links ligand activation with degradation. Mol Endocrinol. 2016;30:1070–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ploton M, Mazuy C, Gheeraert C, Dubois V, Berthier A, Dubois-Chevalier J, et al. The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. J Hepatol. 2018;69:1099–109.

    Article  CAS  PubMed  Google Scholar 

  80. Bilodeau S, Caron V, Gagnon J, Kuftedjian A, Tremblay A. A CK2-RNF4 interplay coordinates non-canonical SUMOylation and degradation of nuclear receptor FXR. J Mol Cell Biol. 2017;9:195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu Y, Lin X, Zhou X, Prochownik EV, Wang F, Li Y. Posttranslational control of lipogenesis in the tumor microenvironment. J Hematol Oncol. 2022;15:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xing C, Huang X, Wang D, Yu D, Hou S, Cui H, et al. Roles of bile acids signaling in neuromodulation under physiological and pathological conditions. Cell Biosci. 2023;13:106.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Byun S, Jung H, Chen J, Kim YC, Kim DH, Kong B, et al. Phosphorylation of hepatic farnesoid X receptor by FGF19 signaling-activated Src maintains cholesterol levels and protects from atherosclerosis. J Biol Chem. 2019;294:8732–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cui S, Hu H, Chen A, Cui M, Pan X, Zhang P, et al. SIRT1 activation synergizes with FXR agonism in hepatoprotection via governing nucleocytoplasmic shuttling and degradation of FXR. Acta Pharm Sin B. 2023;13:559–76.

    Article  CAS  PubMed  Google Scholar 

  85. Chen F, Ellis E, Strom SC, Shneider B, ATPase Class I. Type 8B Member 1 and protein kinase C zeta induce the expression of the canalicular bile salt export pump in human hepatocytes. Pediatr Res. 2010;67:183–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Petrescu AD, DeMorrow S, Farnesoid X. Receptor as target for therapies to treat cholestasis-induced liver injury. Cells. 2021;10:1846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lien F, Berthier A, Bouchaert E, Gheeraert C, Alexandre J, Porez G, et al. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J Clin Invest. 2014;124:1037–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signalling- mechanisms and researchneeds. Nat Rev Endocrinol. 2019;15:701712.

    Article  Google Scholar 

  89. Wang Y, Liu K. Therapeutic potential of oleanolic acid in liver diseases. Naunyn Schmiedebergs Arch Pharmacol. 2024;397:4537–54.

    Article  CAS  PubMed  Google Scholar 

  90. Huang J, Liao S, Fu X, Wang Y, Zhou S, Lu Y. AMP-activated protein kinase-farnesoid X receptor pathway contributes to oleanolic acid-induced liver injury. J Appl Toxicol. 2023;43:1201–13.

    Article  PubMed  Google Scholar 

  91. Hu X, Zhou J, Song SS, Kong W, Shi YC, Chen LL, et al. TLR4/AP-1-targeted anti-inflammatory intervention attenuates insulin sensitivity and liver steatosis. Mediators Inflamm. 2020;2020:2960517.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhou MM, Cole PA. Targeting lysine acetylation readers and writers. Nat Rev Drug Discov. 2025;24:112–33.

    Article  CAS  PubMed  Google Scholar 

  93. Dang F, Wei W. Targeting the acetylation signaling pathway in cancer therapy. Semin Cancer Biol. 2022;85:209–18.

    Article  CAS  PubMed  Google Scholar 

  94. Liu C, Pan Z, Wu Z, Tang K, Zhong Y, Chen Y, et al. Hepatic SIRT6 modulates transcriptional activities of FXR to alleviate acetaminophen-induced hepatotoxicity. Cell Mol Gastroenterol Hepatol. 2022;14:271–93.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kim DH, Xiao Z, Kwon S, Sun X, Ryerson D, Tkac D, et al. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J. 2015;34:184–99.

    Article  PubMed  Google Scholar 

  96. Zhao M, Li G, Zhao L. The role of SIRT1-FXR signaling pathway in valproic acid induced liver injury: a quantitative targeted metabolomic evaluation in epileptic children. Front Pharmacol. 2024;15:1477619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lai J, Li F, Li H, Huang R, Ma F, Gu X, et al. Melatonin alleviates necrotizing enterocolitis by reducing bile acid levels through the SIRT1/FXR signalling axis. Int Immunopharmacol. 2024;128:111360.

    Article  CAS  PubMed  Google Scholar 

  98. Chen C, Liu X, Wang J, Wen X, Zhao H, Chen G, et al. Zinc-mediated deacetylation of FXR activates the adipose triglyceride lipase pathway to reduce hepatic lipid accumulation and enhance lipolysis in yellow catfish. J Nutr. 2025;155:1350–63.

  99. Ge J, Li G, Chen Z, Xu W, Lei X, Zhu S. Kaempferol and nicotiflorin ameliorated alcohol-induced liver injury in mice by miR-138-5p/SIRT1/FXR and gut microbiota. Heliyon. 2023;10:e23336.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rodríguez-Agudo R, González-Recio I, Serrano-Maciá M, Bravo M, Petrov P, Blaya D, et al. Anti-miR-873-5p improves alcohol-related liver disease by enhancing hepatic deacetylation via SIRT1. JHEP Rep. 2023;6:100918.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yang Y, Yu F. Abnormal protein SUMOylation in liver disease: novel target for therapy. J Mol Med. 2024;102:719–31.

    Article  CAS  PubMed  Google Scholar 

  102. Acuña ML, García-Morin A, Orozco-Sepúlveda R, Ontiveros C, Flores A, Diaz AV, et al. Alternative splicing of the SUMO1/2/3 transcripts affects cellular SUMOylation and produces functionally distinct SUMO protein isoforms. Sci Rep. 2023;13:2309.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cheng X, Yang W, Lin W, Mei F. Paradoxes of cellular SUMOylation regulation: a role of biomolecular condensates?. Pharmacol Rev. 2023;75:979–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li K, Xia Y, He J, Wang J, Li J, Ye M, et al. The SUMOylation and ubiquitination crosstalk in cancer. J Cancer Res Clin Oncol. 2023;149:16123–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao L, Zhang W, Shi XH, Chang X, Han Y, Liu C, et al. The mechanism of linear ubiquitination in regulating cell death and correlative diseases. Cell Death Dis. 2023;14:659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Loix M, Zelcer N, Bogie JFJ, Hendriks JJA. The ubiquitous role of ubiquitination in lipid metabolism. Trends Cell Biol. 2024;34:416–29.

    Article  CAS  PubMed  Google Scholar 

  107. Zhou J, Cui S, He Q, Guo Y, Pan X, Zhang P, et al. SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nat Commun. 2020;11:240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gao Y, Zhao Y, Yuan A, Xu L, Huang X, Su Y, et al. Effects of farnesoid-X-receptor SUMOylation mutation on myocardial ischemia/reperfusion injury in mice. Exp Cell Res. 2018;371:301–10.

    Article  CAS  PubMed  Google Scholar 

  109. Pang S, Yu L, Lu Y, Jiang Q, Hou L, Shi R, et al. Farnesoid X receptor expression reduced in obese rat model with insulin resistance. Am J Med Sci. 2015;350:467–70.

    Article  PubMed  Google Scholar 

  110. Duran-Sandoval D, Mautino G, Martin G, Percevault F, Barbier O, Fruchart JC, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 2004;53:890–8.

    Article  CAS  PubMed  Google Scholar 

  111. Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, et al. Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteom. 2012;11:1578–85.

    Article  Google Scholar 

  112. Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol. 2024;21:525–44.

    Article  PubMed  Google Scholar 

  113. Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020;21:729–49.

    Article  CAS  PubMed  Google Scholar 

  114. Li X, Pinou Lv DuY, Chen X, Liu C. Emerging roles of O-glycosylation in regulating protein aggregation, phase separation, and functions. Curr Opin Chem Biol. 2023;75:102314.

    Article  CAS  PubMed  Google Scholar 

  115. Berrabah W, Aumercier P, Gheeraert C, Dehondt H, Bouchaert E, Alexandre J, et al. Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology. 2014;59:2022–33.

    Article  CAS  PubMed  Google Scholar 

  116. Hu YJ, Zhang X, Lv HM, Liu Y, Li SZ. Protein O-GlcNAcylation: the sweet hub in liver metabolic flexibility from a (patho)physiological perspective. Liver Int. 2024;44:293–315.

    Article  CAS  PubMed  Google Scholar 

  117. Caron S, Huaman Samanez C, Dehondt H, Ploton M, Briand O, Lien F, et al. Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. Mol Cell Biol. 2013;33:2202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sayago C, Sánchez-Wandelmer J, García F, Hurtado B, Lafarga V, Prieto P, et al. Decoding protein methylation function with thermal stability analysis. Nat Commun. 2023;14:3016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Małecki JM, Davydova E, Falnes PØ. Protein methylation in mitochondria. J Biol Chem. 2022;298:101791.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wang Y, Bedford MT. Effectors and effects of arginine methylation. Biochem Soc Trans. 2023;51:725–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Daks A, Shuvalov O, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Methyltransferase Set7/9 as a multifaceted regulator of ROS response. Int J Biol Sci. 2023;19:2304–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Batista IAA, Helguero LA. Biological processes and signal transduction pathways regulated by the protein methyltransferase SETD7 and their significance in cancer. Signal Transduct Target Ther. 2018;3:19.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Baghdasaryan A, Chiba P, Trauner M. Clinical application of transcriptional activators of bile salt transporters. Mol Asp Med. 2014;37:57–76.

    Article  CAS  Google Scholar 

  124. Ko S, Ahn J, Song CS, Kim S, Knapczyk-Stwora K, Chatterjee B. Lysine methylation and functional modulation of androgen receptor by Set9 methyltransferase. Mol Endocrinol. 2011;25:433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Takemoto Y, Ito A, Niwa H, Okamura M, Fujiwara T, Hirano T, et al. Identification of cyproheptadine as an inhibitor of SET domain containing lysine methyltransferase 7/9 (Set7/9) that regulates estrogen-dependent transcription. J Med Chem. 2016;59:3650–60.

    Article  CAS  PubMed  Google Scholar 

  126. Liu Z, Wu X, Lv J, Sun H, Zhou F. Resveratrol induces p53 in colorectal cancer through SET7/9. Oncol Lett. 2019;17:3783–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ma H, Baumann CT, Li H, Strahl BD, Rice R, Jelinek MA, et al. Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter. Curr Biol. 2001;11:1981–5.

    Article  CAS  PubMed  Google Scholar 

  128. Ananthanarayanan M, Li S, Balasubramaniyan N, Suchy FJ, Walsh MJ. Ligand-dependent activation of the farnesoid X-receptor directs arginine methylation of histone H3 by CARM1. J Biol Chem. 2004;279:54348–57.

    Article  CAS  PubMed  Google Scholar 

  129. Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol Rev. 2023;103:31–276.

    Article  CAS  PubMed  Google Scholar 

  130. Chen SM, Tang XQ. Homocysteinylation and sulfhydration in diseases. Curr Neuropharmacol. 2022;20:1726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, et al. H2S signals through protein S-sulfhydration. Sci Signal. 2009;2:ra72.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wu D, Sun Y, Gu Y, Zhu D. Cystathionine γ-lyase S-sulfhydrates SIRT1 to attenuate myocardial death in isoprenaline-induced heart failure. Redox Rep. 2023;28:2174649.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hajdu B, Hunyadi-Gulyás É, Kato K, Kawaguchi A, Nagata K, Gyurcsik B. Zinc binding of a Cys2His2-type zinc finger protein is enhanced by the interaction with DNA. J Biol Inorg Chem. 2023;28:301–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Woodhouse BC, Dianov GL. Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair. 2008;7:1077–86.

    Article  CAS  PubMed  Google Scholar 

  135. Mangerich A, Burkle A. Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxid Med Cell Longev. 2012;2012:321653.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Alemasova EE, Lavrik OI. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res. 2019;47:3811–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sheng Y, Meng G, Zhou Z, Du R, Wang Y, Jiang M. PARP-1 inhibitor alleviates liver lipid accumulation of atherosclerosis via modulating bile acid metabolism and gut microbes. Mol Omics. 2023;19:560–73.

    Article  CAS  PubMed  Google Scholar 

  138. Cao L, Wang M, Xu K. Research progress of role and mechanism of SETD7 in tumor occurrence and progression. Zhongguo Fei Ai Za Zhi. 2023;26:38–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Xiong XL, Ding Y, Chen ZL, Wang Y, Liu P, Qin H, et al. Emodin rescues intrahepatic cholestasis via stimulating FXR/BSEP pathway in promoting the canalicular export of accumulated bile. Front Pharmacol. 2019;10:522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Guillemette B, Drogaris P, Lin HH, Armstrong H, Hiragami-Hamada K, Imhof A, et al. H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet. 2011;7:e1001354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795–800.

    Article  CAS  PubMed  Google Scholar 

  142. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.

    Article  PubMed  Google Scholar 

  143. Lombardi R, Iuculano F, Pallini G, Fargion S, Fracanzani AL. Nutrients, genetic factors, and their interaction in non-alcoholic fatty liver disease and cardiovascular disease. Int J Mol Sci. 2020;21:8761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nie H, Song C, Wang D, Cui S, Ren T, Cao Z, et al. MicroRNA-194 inhibition improves dietary-induced non-alcoholic fatty liver disease in mice through targeting on FXR. Biochim Biophys Acta Mol Basis Dis. 2017;1863:3087–94.

    Article  CAS  PubMed  Google Scholar 

  145. Wu X, Fan X, Miyata T, Kim A, Cajigas-Du Ross CK, Ray S, et al. Recent advances in understanding of pathogenesis of alcohol-associated liver disease. Annu Rev Pathol. 2023;18:411–38.

    Article  CAS  PubMed  Google Scholar 

  146. Mackowiak B, Fu Y, Maccioni L, Gao B. Alcohol-associated liver disease. J Clin Invest. 2024;134:e176345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Xu T, Li L, Hu H, Meng XM, Huang C, Zhang L, et al. MicroRNAs in alcoholic liver disease: recent advances and future applications. J Cell Physiol. 2018;234:382–94.

    Article  PubMed  Google Scholar 

  148. Liu Y, Zhang M, Zhang H, Qian X, Luo L, He Z. Anthocyanins inhibit airway inflammation by downregulating the NF-κB pathway via the miR-138-5p/SIRT1 Axis in asthmatic mice. J Int Arch Allergy Immunol. 2022;183:539–51.

    Article  CAS  Google Scholar 

  149. Guo S, Ma B, Jiang X, Li X, Jia Y. Astragalus polysaccharides inhibits tumorigenesis and lipid metabolism through miR-138-5p/SIRT1/SREBP1 pathway in prostate cancer. Front Pharmacol. 2020;11:598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yu L, Liu Y, Wang S, Zhang Q, Zhao J, Zhang H, et al. Cholestasis: exploring the triangular relationship of gut microbiota-bile acid-cholestasis and the potential probiotic strategies. Gut Microbes. 2023;15:2181930.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Pieters A, Gijbels E, Cogliati B, Annaert P, Devisscher L, Vinken M. Biomarkers of cholestasis. Biomark Med. 2021;15:437–54.

    Article  CAS  PubMed  Google Scholar 

  152. Byun S, Kim DH, Ryerson D, Kim YC, Sun H, Kong B, et al. Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis. Nat Commun. 2018;9:2590.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zhao Q, Liu F, Cheng Y, Xiao XR, Hu DD, Tang YM, et al. Celastrol protects from cholestatic liver injury through modulation of SIRT1–FXR signaling. Mol Cell Proteom. 2019;18:520–33.

    Article  CAS  Google Scholar 

  154. Alshehri AS, El-Kott AF, El-Kenawy AE, Khalifa HS, AlRamlawy AM. Cadmium chloride induces non-alcoholic fatty liver disease in rats by stimulating miR-34a/SIRT1/FXR/p53 axis. Sci Total Environ. 2021;784:147182.

    Article  CAS  PubMed  Google Scholar 

  155. Gao Z, Zhang JC, Wei L, Yang X, Zhang Y, Cheng B, et al. The protective effects of imperatorin on acetaminophen overdose-induced acute liver injury. Oxid Med Cell Longev. 2020;2020:8026838.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kulkarni SR, Soroka CJ, Hagey LR, Boyer JL. Sirtuin 1 activation alleviates cholestatic liver injury in a cholic acid-fed mouse model of cholestasis. Hepatology. 2016;64:2151–64.

    Article  CAS  PubMed  Google Scholar 

  157. Blokker BA, Maijo M, Echeandia M, Galduroz M, Patterson AM, Ten A, et al. Fine-tuning of sirtuin 1 expression is essential to protect the liver from cholestatic liver disease. Hepatology. 2019;69:699–716.

    Article  CAS  PubMed  Google Scholar 

  158. Liu PY, Chen CC, Chin CY, Liu TJ, Tsai WC, Chou JL, et al. E3 ubiquitin ligase Grail promotes hepatic steatosis through SIRT1 inhibition. Cell Death Dis. 2021;12:323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Li M, Hong W, Hao C, Li L, Xu H, Li P, et al. Hepatic stellate cell-specific deletion of SIRT1 exacerbates liver fibrosis in mice. Biochim Biophys Acta Mol Basis Dis. 2017;1863:3202–11.

    Article  CAS  PubMed  Google Scholar 

  160. Li M, Hong W, Hao C, Li L, Wu D, Shen A, et al. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice. FASEB J. 2018;32:500–11.

    Article  CAS  PubMed  Google Scholar 

  161. Qin T, Hasnat M, Wang Z, Hassan HM, Zhou Y, Yuan Z, et al. Geniposide alleviated bile acid-associated NLRP3 inflammasome activation by regulating SIRT1/FXR signaling in bile duct ligation-induced liver fibrosis. Phytomedicine. 2023;118:154971.

    Article  CAS  PubMed  Google Scholar 

  162. Liao S, Fu X, Huang J, Wang Y, Lu Y, Zhou S. Suppression of SIRT1/FXR signaling pathway contributes to oleanolic acid-induced liver injury. Toxicol Appl Pharmacol. 2023;467:116509.

    Article  CAS  PubMed  Google Scholar 

  163. Fontana RJ, Bjornsson ES, Reddy R, Andrade RJ. The evolving profile of idiosyncratic drug-induced liver injury. Clin Gastroenterol Hepatol. 2023;21:2088–99.

    Article  CAS  PubMed  Google Scholar 

  164. Rani J, Dhull SB, Rose PK, Kidwai MK. Drug-induced liver injury and anti-hepatotoxic effect of herbal compounds: a metabolic mechanism perspective. Phytomedicine. 2024;122:155142.

    Article  CAS  PubMed  Google Scholar 

  165. Thalha AM, Mahadeva S, Boon Tan AT, Mun KS. Kombiglyze (metformin and saxagliptin)-induced hepatotoxicity in a patient with non-alcoholic fatty liver disease. JGH Open. 2018;2:242–5.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Milkiewicz P, Heathcote J. Cholestasis induced by Chinese herbal remedy Xia-Ku-Hua-Tan-Pian. Liver Int. 2011;31:746–7.

    Article  PubMed  Google Scholar 

  167. Kalantary-Charvadeh A, Nazari Soltan Ahmad S, Aslani S, Beyrami M, Mesgari-Abbasi M. β-lapachone protects against doxorubicin-induced hepatotoxicity through modulation of NAD+/SIRT-1/FXR/p-AMPK/NF-κB and Nrf2 signaling axis. J Biochem Mol Toxicol. 2024;38:e23564.

    Article  CAS  PubMed  Google Scholar 

  168. Feng J, Ye S, Hai B, Lou Y, Duan M, Guo P, et al. RNF115/BCA2 deficiency alleviated acute liver injury in mice by promoting autophagy and inhibiting inflammatory response. Cell Death Dis. 2023;14:855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Horn P, Tacke F. Metabolic reprogramming in liver fibrosis. Cell Metab. 2024;36:1439–55.

    Article  CAS  PubMed  Google Scholar 

  170. Li X, Ren Y, Chang K, Wu W, Griffiths HR, Lu S, et al. Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Front Immunol. 2023;14:1153915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang H, Chen L, Sun Q, Yao F, Muhammad S, Sun C. The role of HDAC11 in obesity-related metabolic disorders: a critical review. J Cell Physiol. 2021;236:5582–91.

    Article  CAS  PubMed  Google Scholar 

  172. Yang JW, Zou Y, Chen J, Cui C, Song J, Yang MM, et al. Didymin alleviates metabolic dysfunction-associated fatty liver disease (MAFLD) via the stimulation of Sirt1-mediated lipophagy and mitochondrial biogenesis. J Transl Med. 2023;21:921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lu C, Zhao H, Liu Y, Yang Z, Yao H, Liu T, et al. Novel role of the SIRT1 in endocrine and metabolic diseases. Int J Biol Sci. 2023;19:484–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wang XX, Wang D, Luo Y, Myakala K, Dobrinskikh E, Rosenberg AZ, et al. FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity. J Am Soc Nephrol. 2018;29:118–37.

    Article  CAS  PubMed  Google Scholar 

  175. Wang L, Huang X, Hu S, Ma X, Wang S, Pang S. Effect of simvastatin on the expression of farnesoid X receptor in diabetic animal models of altered glucose homeostasis. Chin Med J. 2014;127:218–24.

    Article  CAS  PubMed  Google Scholar 

  176. Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal immune imbalance is an alarm in the development of IBD. Mediators Inflamm. 2023;2023:1073984.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Dong X, Qi M, Cai C, Zhu Y, Li Y, Coulter S, et al. Farnesoid X receptor mediates macrophage-intrinsic responses to suppress colitis-induced colon cancer progression. JCI Insight. 2024;9:e170428.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Zhou M, Pei B, Cai P, Yi C, Akanyibah FA, Lyu C, et al. Human umbilical cord mesenchymal stem cell-derived exosomes repair IBD by activating the SIRT1-FXR pathway in macrophages. Stem Cell Res Ther. 2025;16:233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Klimeck L, Heisser T, Hoffmeister M, Brenner H. Colorectal cancer: a health and economic problem. Best Pract Res Clin Gastroenterol. 2023;66:101839.

    Article  PubMed  Google Scholar 

  180. Yin Y, Wang M, Gu W, Chen L. Intestine-specific FXR agonists as potential therapeutic agents for colorectal cancer. Biochem Pharmacol. 2021;186:114430.

    Article  CAS  PubMed  Google Scholar 

  181. Lu L, Jiang YX, Liu XX, Jin JM, Gu WJ, Luan X, et al. FXR agonist GW4064 enhances anti-PD-L1 immunotherapy in colorectal cancer. Oncoimmunology. 2023;12:2217024.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Nenkov M, Shi Y, Ma Y, Gaßler N, Chen Y, Targeting Farnesoid X. Receptor in tumor and the tumor microenvironment: implication for therapy. Int J Mol Sci. 2023;25:6.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Modica S, Murzilli S, Salvatore L, Schmidt DR, Moschetta A. Nuclear bile acid receptor FXR protects against intestinal tumorigenesis. Cancer Res. 2008;68:9589–94.

    Article  CAS  PubMed  Google Scholar 

  184. Fu T, Coulter S, Yoshihara E, Oh TG, Fang S, Cayabyab F, et al. FXR regulates intestinal cancer stem cell proliferation. Cell. 2019;176:1098–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sun L, Cai J, Gonzalez FJ. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol. 2021;18:335–47.

    Article  CAS  PubMed  Google Scholar 

  186. Lu Y, Li D, Wang L, Zhang H, Jiang F, Zhang R, et al. Comprehensive investigation on associations between dietary intake and blood levels of fatty acids and colorectal cancer risk. Nutrients. 2023;15:730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Asafo-Agyei KO, Samant H. Hepatocellular carcinoma. Treasure Island, FL: StatPearls; 2023.

  188. Liu Y, Zhu J, Jin Y, Sun Z, Wu X, Zhou H, et al. Disrupting bile acid metabolism by suppressing Fxr causes hepatocellular carcinoma induced by YAP activation. Nat Commun. 2025;16:3583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang XY, Luo M, Qin S, Fu WG, Zhang MY. FXR, MRP-1 and SLC7A5: new targets for the treatment of hepatocellular carcinoma. Technol Cancer Res Treat. 2024;23:15330338241276889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Mazucanti CH, Cabral-Costa JV, Vasconcelos AR, Andreotti DZ, Scavone C, Kawamoto EM. Longevity pathways (mTOR, SIRT, Insulin/IGF-1) as key modulatory targets on aging and neurodegeneration. Curr Top Med Chem. 2015;15:2116–38.

    Article  CAS  PubMed  Google Scholar 

  191. Back JH, Rezvani HR, Zhu Y, Guyonnet-Duperat V, Athar M, Ratner D, et al. Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent Inhibition of sirtuin 1. J Biol Chem. 2011;286:19100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Gao Z, Zhang J, Kheterpal I, Kennedy N, Davis RJ, Ye J. Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. The. J Biol Chem. 2011;286:22227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ricciardelli C, Lokman NA, Cheruvu S, Tan IA, Ween MP, Pyragius CE, et al. Transketolase is upregulated in metastatic peritoneal implants and promotes ovarian cancer cell proliferation. Clin Exp Metastasis. 2015;32:441–55.

    Article  CAS  PubMed  Google Scholar 

  194. Wang J, Zhang X, Ma D, Lee WP, Xiao J, Zhao Y, et al. Inhibition of transketolase by oxythiamine altered dynamics of protein signals in pancreatic cancer cells. Exp Hematol Oncol. 2013;2:18.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Xu IM, Lai RK, Lin SH, Tse AP, Chiu DK, Koh HY, et al. Transketolase counteracts oxidative stress to drive cancer development. Proc Natl Acad Sci USA. 2016;113:E725–34.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Alharthi J, Pan Z, Gloss BS, McLeod D, Weltman M, George J, et al. Loss of metabolic adaptation in lean MAFLD is driven by endotoxemia leading to epigenetic reprogramming. Metabolism. 2023;144:155583.

    Article  CAS  PubMed  Google Scholar 

  197. Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, et al. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther. 2023;8:220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Badman MK, Chen J, Desai S, Vaidya S, Neelakantham S, Zhang J, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the novel non-bile acid FXR agonist tropifexor (LJN452) in healthy volunteers. Clin Pharmacol Drug Dev. 2020;9:395–410.

    Article  CAS  PubMed  Google Scholar 

  199. Naoumov NV, Brees D, Loeffler J, Chng E, Ren Y, Lopez P, et al. Digital pathology with artificial intelligence analyses provides greater insights into treatment-induced fibrosis regression in NASH. J Hepatol. 2022;77:1399–409.

    Article  CAS  PubMed  Google Scholar 

  200. Patel K, Harrison SA, Elkhashab M, Trotter JF, Herring R, Rojter SE, et al. Cilofexor, a nonsteroidal FXR agonist, in patients with noncirrhotic NASH: a phase 2 randomized controlled trial. Hepatology. 2020;72:58–71.

    Article  CAS  PubMed  Google Scholar 

  201. Alkhouri N, Herring R, Kabler H, Kayali Z, Hassanein T, Kohli A, et al. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: a randomised, open-label phase II trial. J Hepatol. 2022;77:607–18.

    Article  CAS  PubMed  Google Scholar 

  202. Loomba R, Noureddin M, Kowdley KV, Kohli A, Sheikh A, Neff G, et al. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH. Hepatology. 2021;73:625–43.

    Article  CAS  PubMed  Google Scholar 

  203. Fan H, Yang F, Xiao Z, Luo H, Chen H, Chen Z, et al. Lactylation: novel epigenetic regulatory and therapeutic opportunities. Am J Physiol Endocrinol Metab. 2023;324:E330–8.

    Article  CAS  PubMed  Google Scholar 

  204. Lian J, Liu W, Hu Q, Zhang X. Succinylation modification: a potential therapeutic target in stroke. Neural Regen Res. 2024;19:781–7.

    Article  CAS  PubMed  Google Scholar 

  205. Zhou B, Hao Q, Liang Y, Kong E. Protein palmitoylation in cancer: molecular functions and therapeutic potential. Mol Oncol. 2023;17:3–26.

    Article  CAS  PubMed  Google Scholar 

  206. Yuan H, Wu X, Wu Q, Chatoff A, Megill E, Gao J, et al. Lysine catabolism reprograms tumour immunity through histone crotonylation. Nature. 2023;617:818–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Li C, Liu Z, Kong D, Li Z, Li L. Lactylation: a novel driver of drug resistance in the tumor microenvironment. Cancer Drug Resist. 2025;8:39.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Liu Z, Wang R, Wang Y, Duan Y, Zhan H. Targeting succinylation-mediated metabolic reprogramming as a potential approach for cancer therapy. Biomed Pharmacother. 2023;168:115713.

    Article  CAS  PubMed  Google Scholar 

  209. Chen Y, Li Y, Wu L. Protein S-palmitoylation modification: implications in tumor and tumor immune microenvironment. Front Immunol. 2024;15:1337478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Guo Y, Li J, Zhang K. Crotonylation modification and its role in diseases. Front Mol Biosci. 2024;11:1492212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (82404775, 82301823 and 82373928); Fundamental Research Funds for the Central Universities (Project for Young Teachers) (2042023kf0064); Zhongnan Hospital of Wuhan University Science, Technology and Innovation Seed Fund (CXPY2024025); National Key R&D Program of China (No. 2024YFC2815900); Fundamental Research Funds for the Central Universities (No. 2042025kf0062); Research Fund from Medical Sci-Tech Innovation Platform of Zhongnan Hospital, Wuhan University (PTXM2025015); Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University (ZNLH202319); and Undergraduate Training Programs for Innovation and Entrepreneurship of Wuhan University (S202510486461&W202510486456).

Author information

Authors and Affiliations

Authors

Contributions

QRM conducted the literature review and wrote the draft of the manuscript. CQW assisted in the literature search. CGL, KEZ, and ZFL provided useful comments and suggestions. PFX and LL revised the manuscript. All the authors have agreed both to be personally accountable for their own contributions and to ensure that questions related to the accuracy or integrity of any part of the work are addressed. All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Peng-fei Xu or Ling Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Qr., Wu, Cq., Lv, Cg. et al. Epigenetic regulation and posttranslational modifications of FXR: underlying mechanisms and implications in digestive diseases. Acta Pharmacol Sin (2026). https://doi.org/10.1038/s41401-025-01726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01726-0

Keywords

Search

Quick links