Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms, precision therapies, and technological frontiers in coronary atherosclerosis: a comprehensive review

Abstract

Coronary atherosclerosis is a leading cause of morbidity and mortality worldwide and is characterized by complex molecular and cellular mechanisms involving lipid dysregulation, endothelial dysfunction, immune-inflammatory processes, and vascular remodeling. Despite advancements in conventional therapies, including statins and antiplatelet agents, significant residual risk persists, particularly in patients with genetic dyslipidemias, persistent inflammation, or limited access to advanced care. Recent breakthroughs in precision medicine, multiomics technologies, and high-resolution imaging are transforming our approach to cardiovascular risk assessment by enabling refined stratification through single-cell transcriptomics, polygenic risk scoring, and artificial intelligence-powered plaque analysis. This review synthesizes the contemporary understanding of disease mechanisms and emerging therapeutic strategies, highlighting novel interventions targeting PCSK, inflammatory pathways, and vascular regeneration through cell-based therapies. We further explored the transformative potential of CRISPR-Cas9 gene editing for durable lipid lowering, nanotechnology-enabled drug delivery, and gut microbiota modulation targeting metabolites such as trimethylamine N-oxide. Although these innovations promise personalized atherosclerosis management, challenges remain in terms of accessibility, health equity, and clinical implementation. The integration of multimodal data analytics with targeted therapeutics heralds a new era of precision cardiology aimed at reducing the global burden of coronary artery disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiological mechanisms in coronary atherosclerosis.

Similar content being viewed by others

References

  1. Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The global burden of cardiovascular diseases and risk: a compass for future health. J Am Coll Cardiol. 2022;80:2361–71.

    Article  PubMed  Google Scholar 

  2. Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation. 2023;147:e93–621.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Libby P, Hansson GK. From focal lipid storage to systemic inflammation: JACC review topic of the week. J Am Coll Cardiol. 2019;74:1594–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leopold JA, Loscalzo J. Emerging role of precision medicine in cardiovascular disease. Circ Res. 2018;122:1302–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction. N Engl J Med. 2012;366:54–63.

    Article  CAS  PubMed  Google Scholar 

  6. Lusis AJ, Mar R, Pajukanta P. Genetics of atherosclerosis. Annu Rev Genomics Hum Genet. 2004;5:189–218.

    Article  CAS  PubMed  Google Scholar 

  7. McGill HC, McMahan CA, Herderick EE, Malcom GT, Tracy RE, Strong JP. Origin of atherosclerosis in childhood and adolescence. Am J Clin Nutr. 2000;72:1307S–1315S.

    Article  CAS  PubMed  Google Scholar 

  8. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP, Herderick EE, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA. 1999;281:727–35.

    Article  CAS  PubMed  Google Scholar 

  9. Law M, Wald NJ. Efficacy and safety of cholesterol-lowering treatment. Lancet. 2006;367:469–70. author reply 470-471.

    Article  PubMed  Google Scholar 

  10. Antithrombotic Trialists’ Collaboration Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324:71–86.

  11. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22.

    Article  CAS  PubMed  Google Scholar 

  12. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34:3478–90a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    Article  CAS  PubMed  Google Scholar 

  14. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Oikonomou EK, Williams MC, Kotanidis CP, Desai MY, Marwan M, Antonopoulos AS, et al. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur Heart J. 2019;40:3529–43.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73:1317–35.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature. 2021;593:429–34.

    Article  CAS  PubMed  Google Scholar 

  19. Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:620–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120:713–35.

    Article  PubMed  Google Scholar 

  21. Libby P, Hansson GK. Inflammation and immunity in diseases of the arterial tree: players and layers. Circ Res. 2015;116:307–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tabas I, Bornfeldt KE. Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis. Circ Res. 2020;126:1209–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doddaballapur A, Michalik KM, Manavski Y, Lucas T, Houtkooper RH, You X, et al. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol. 2015;35:137–45.

    Article  CAS  PubMed  Google Scholar 

  24. Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327–87.

    Article  PubMed  Google Scholar 

  25. Kwak BR, Bäck M, Bochaton-Piallat M-L, Caligiuri G, Daemen MJAP, Davies PF, et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J. 2014;35:3013–20, 3020a–3020d.

  26. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454:345–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van den Berg BM, Nieuwdorp M, Stroes ESG, Vink H. Glycocalyx and endothelial (dys) function: from mice to men. Pharmacol Rep PR. 2006;58:75–80.

    PubMed  Google Scholar 

  28. Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, Amadori L, et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med. 2019;25:1576–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wirka RC, Wagh D, Paik DT, Pjanic M, Nguyen T, Miller CL, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med. 2019;25:1280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37. 837a–837d.

    Article  PubMed  Google Scholar 

  31. Carlström M, Weitzberg E, Lundberg JO. Nitric oxide signaling and regulation in the cardiovascular system: recent advances. Pharmacol Rev. 2024;76:1038–62.

    Article  PubMed  Google Scholar 

  32. Crabtree, Tatham AL MJ, Al-Wakeel Y, Warrick N, Hale AB, Cai S, et al. Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression. J Biol Chem. 2009;284:1136–44.

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi S, Ohtake T, Mochida Y, Ishioka K, Oka M, Maesato K, et al. Asymmetric dimethylarginine (ADMA) as a novel risk factor for progression of coronary artery calcification in patients with chronic kidney disease. J Clin Med. 2025;14:1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    Article  CAS  PubMed  Google Scholar 

  35. Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62:525–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peng W, Cai G, Xia Y, Chen J, Wu P, Wang Z, et al. Mitochondrial dysfunction in atherosclerosis. DNA Cell Biol. 2019;38:597–606.

    Article  CAS  PubMed  Google Scholar 

  37. Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021;22:4642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen S, Henderson A, Petriello MC, Romano KA, Gearing M, Miao J, et al. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab. 2019;30:1141–1151.e5.

    Article  CAS  PubMed  Google Scholar 

  39. Bloom SI, Islam MT, Lesniewski LA, Donato AJ. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol. 2023;20:38–51.

    Article  PubMed  Google Scholar 

  40. Adebayo M, Singh S, Singh AP, Dasgupta S. Mitochondrial fusion and fission: the fine-tune balance for cellular homeostasis. FASEB J Off Publ Fed Am Soc Exp Biol. 2021;35:e21620.

    CAS  Google Scholar 

  41. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–33.

    Article  CAS  PubMed  Google Scholar 

  42. Antoniades C, Bakogiannis C, Leeson P, Guzik TJ, Zhang MH, Tousoulis D, et al. Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin-mediated endothelial nitric oxide synthase coupling. Circulation. 2011;124:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang L, Cheng CK, Yi M, Lui KO, Huang Y. Targeting endothelial dysfunction and inflammation. J Mol Cell Cardiol. 2022;168:58–67.

    Article  CAS  PubMed  Google Scholar 

  44. Pan H, Xue C, Auerbach BJ, Fan J, Bashore AC, Cui J, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation. 2020;142:2060–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fan J, Watanabe T. Atherosclerosis: known and unknown. Pathol Int. 2022;72:151–60.

    Article  PubMed  Google Scholar 

  46. Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res. 2002;43:1363–79.

    Article  CAS  PubMed  Google Scholar 

  47. Ivanova EA, Myasoedova VA, Melnichenko AA, Grechko AV, Orekhov AN. Small dense low-density lipoprotein as biomarker for atherosclerotic diseases. Oxid Med Cell Longev. 2017;2017:1273042.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hafiane A, Favari E, Daskalopoulou SS, Vuilleumier N, Frias MA. High-density lipoprotein cholesterol efflux capacity and cardiovascular risk in autoimmune and non-autoimmune diseases. Metabolism. 2020;104:154141.

    Article  CAS  PubMed  Google Scholar 

  49. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997;272:20963–6.

    Article  CAS  PubMed  Google Scholar 

  50. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145:341–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Greaves DR, Gordon S. The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. J Lipid Res. 2009;50:S282–286.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pantazi D, Tellis C, Tselepis AD. Oxidized phospholipids and lipoprotein-associated phospholipase A2 (Lp-PLA2) in atherosclerotic cardiovascular disease: an update. BioFactors. 2022;48:1257–70.

    Article  CAS  PubMed  Google Scholar 

  53. Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15:104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rosenson RS, Brewer HB, Ansell BJ, Barter P, Chapman MJ, Heinecke JW, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016;13:48–60.

    Article  CAS  PubMed  Google Scholar 

  55. Besler C, Lüscher TF, Landmesser U. Molecular mechanisms of vascular effects of High-density lipoprotein: alterations in cardiovascular disease. EMBO Mol Med. 2012;4:251–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kontush A, Chapman MJ. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 2006;58:342–74.

    Article  CAS  PubMed  Google Scholar 

  57. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50:1219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein JJP, Rubba P, et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020;383:711–20.

    Article  CAS  PubMed  Google Scholar 

  59. Li S, Lu AJ, Nagueh ES, Li Y, Graber M, Carter KN, et al. O-GlcNAcylation promotes angiogenic transdifferentiation to reverse vascular ischemia. Nat Cardiovasc Res. 2025;4:904–20.

    Article  CAS  PubMed  Google Scholar 

  60. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12:204–12.

    Article  CAS  PubMed  Google Scholar 

  61. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res. 2018;122:1661–74.

    Article  CAS  PubMed  Google Scholar 

  62. Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res. 2018;122:1675–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021;22:6995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis. Immunity. 2017;47:621–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Westerterp M, Bochem AE, Yvan-Charvet L, Murphy AJ, Wang N, Tall AR. ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ Res. 2014;114:157–70.

    Article  CAS  PubMed  Google Scholar 

  66. Yerly A, van der Vorst EPC, Schindewolf M, Kotelis D, Noels H, Döring Y. Chemokine-receptor-guided B-cell immunity in cardiovascular disease. Basic Res Cardiol. 2025;120:1075–90.

  67. Smit V, de Mol J, Schaftenaar FH, Depuydt MAC, Postel RJ, Smeets D, et al. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc Res. 2023;119:2508–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jin W, Luo Z, Yang H. Peripheral B cell subsets in autoimmune diseases: clinical implications and effects of B cell-targeted therapies. J Immunol Res. 2020;2020:9518137.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol San Diego Calif. 2018;81:241–330.

    CAS  Google Scholar 

  70. Wang L, Wang X, Kong W. ADAMTS-7, a novel proteolytic culprit in vascular remodeling. Sheng Li Xue Bao. 2010;62:285–94.

    CAS  PubMed  Google Scholar 

  71. Sluimer JC, Daemen MJ. Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol. 2009;218:7–29.

    Article  PubMed  Google Scholar 

  72. Björnheden T, Levin M, Evaldsson M, Wiklund O. Evidence of hypoxic areas within the arterial wall in vivo. Arterioscler Thromb Vasc Biol. 1999;19:870–6.

    Article  PubMed  Google Scholar 

  73. Cola C, Almeida M, Li D, Romeo F, Mehta JL. Regulatory role of endothelium in the expression of genes affecting arterial calcification. Biochem Biophys Res Commun. 2004;320:424–7.

    Article  CAS  PubMed  Google Scholar 

  74. Chen Y, Zhao X, Wu H. Arterial stiffness: a focus on vascular calcification and its link to bone mineralization. Arterioscler Thromb Vasc Biol. 2020;40:1078–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cong J, Cheng B, Liu J, He P. RTEF-1 inhibits vascular smooth muscle cell calcification through regulating Wnt/β-catenin signaling pathway. Calcif Tissue Int. 2021;109:203–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Majumdar U, Manivannan S, Basu M, Ueyama Y, Blaser MC, Cameron E, et al. Nitric oxide prevents aortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling. Sci Adv. 2021;7:eabe3706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sakamoto A, Virmani R, Finn AV. Coronary artery calcification: recent developments in our understanding of its pathologic and clinical significance. Curr Opin Cardiol. 2018;33:645–52.

    Article  PubMed  Google Scholar 

  78. Pan W, Jie W, Huang H. Vascular calcification: molecular mechanisms and therapeutic interventions. MedComm. 2023;4:e200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sugiyama T, Yamamoto E, Fracassi F, Lee H, Yonetsu T, Kakuta T, et al. Calcified plaques in patients with acute coronary syndromes. JACC Cardiovasc Interv. 2019;12:531–40.

    Article  PubMed  Google Scholar 

  80. De Maria GL, Scarsini R, Banning AP. Management of calcific coronary artery lesions: is it time to change our interventional therapeutic approach?. JACC Cardiovasc Interv. 2019;12:1465–78.

    PubMed  Google Scholar 

  81. Reynolds HR, Shaw LJ, Min JK, Page CB, Berman DS, Chaitman BR, et al. Outcomes in the ISCHEMIA trial based on coronary artery disease and ischemia severity. Circulation. 2021;144:1024–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Scheer FAJL, Shea SA. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. Blood. 2014;123:590–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Okada Y, Galbreath MM, Shibata S, Jarvis SS, Bivens TB, Vongpatanasin W, et al. Morning blood pressure surge is associated with arterial stiffness and sympathetic baroreflex sensitivity in hypertensive seniors. Am J Physiol Heart Circ Physiol. 2013;305:H793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Anea CB, Zhang M, Chen F, Ali MI, Hart CMM, Stepp DW, et al. Circadian clock control of Nox4 and reactive oxygen species in the vasculature. PLoS One. 2013;8:e78626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thosar SS, Berman AM, Herzig MX, McHill AW, Bowles NP, Swanson CM, et al. Circadian rhythm of vascular function in midlife adults. Arterioscler Thromb Vasc Biol. 2019;39:1203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science. 2013;341:1483–8.

    Article  CAS  PubMed  Google Scholar 

  87. Bonten TN, Snoep JD, Assendelft WJJ, Zwaginga JJ, Eikenboom J, Huisman MV, et al. Time-dependent effects of aspirin on blood pressure and morning platelet reactivity: a randomized cross-over trial. Hypertens Dallas Tex 1979. 2015;65:743–50.

    CAS  Google Scholar 

  88. Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tang WHW, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116:448–55.

    Article  CAS  PubMed  Google Scholar 

  91. Gupta N, Buffa JA, Roberts AB, Sangwan N, Skye SM, Li L, et al. Targeted inhibition of gut microbial trimethylamine N-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arterioscler Thromb Vasc Biol. 2020;40:1239–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang Z, Bergeron N, Levison BS, Li XS, Chiu S, Jia X, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J. 2019;40:583–94.

    Article  CAS  PubMed  Google Scholar 

  93. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.

    Article  CAS  PubMed  Google Scholar 

  94. Giral P, Moulin P, Rosenbaum D. Efficacy and safety of more intensive lowering of LDL cholesterol. Lancet. 2011;377:715.

    Article  PubMed  Google Scholar 

  95. Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stroes ES, Thompson PD, Corsini A, Vladutiu GD, Raal FJ, Ray KK, et al. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur Heart J. 2015;36:1012–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grundy SM, Vega GL, McGovern ME, Tulloch BR, Kendall DM, Fitz-Patrick D, et al. Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes: results of the assessment of diabetes control and evaluation of the efficacy of Niaspan trial. Arch Intern Med. 2002;162:1568–76.

    Article  CAS  PubMed  Google Scholar 

  98. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99.

    Article  CAS  PubMed  Google Scholar 

  99. Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two Phase 3 Trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382:1507–19.

    Article  CAS  PubMed  Google Scholar 

  100. Stein EA. PCSK9: the Critical role of familial hypercholesterolemia from discovery to benefit for all: editorial to: “Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia and LDL-C of 160 mg/Dl or Higher” by Henry N. Ginsberg et Al. Cardiovasc Drugs Ther. 2016;30:427–31.

    Article  PubMed  Google Scholar 

  101. Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020;382:1520–30.

    Article  CAS  PubMed  Google Scholar 

  102. Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001;345:494–502.

    Article  CAS  PubMed  Google Scholar 

  103. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361:1045–57.

    Article  CAS  PubMed  Google Scholar 

  104. Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001–15.

    Article  CAS  PubMed  Google Scholar 

  105. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360:354–62.

    Article  CAS  PubMed  Google Scholar 

  106. Eikelboom JW, Connolly SJ, Bosch J, Dagenais GR, Hart RG, Shestakovska O, et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med. 2017;377:1319–30.

    Article  CAS  PubMed  Google Scholar 

  107. Anand SS, Bosch J, Eikelboom JW, Connolly SJ, Diaz R, Widimsky P, et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet Lond Engl. 2018;391:219–29.

    Article  CAS  Google Scholar 

  108. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22.

    Article  CAS  PubMed  Google Scholar 

  109. Gaba P, Bhatt DL, Giugliano RP, Steg PG, Miller M, Brinton EA, et al. Comparative reductions in investigator-reported and adjudicated ischemic events in REDUCE-IT. J Am Coll Cardiol. 2021;78:1525–37.

    Article  CAS  PubMed  Google Scholar 

  110. Rabbat MG, Lakshmanan S, Benjamin MM, Doros G, Kinninger A, Budoff MJ, et al. Benefit of icosapent ethyl on coronary physiology assessed by computed tomography angiography fractional flow reserve: EVAPORATE-FFRCT. Eur Heart J Cardiovasc Imaging. 2023;24:866–73.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    Article  CAS  PubMed  Google Scholar 

  112. Tardif J-C, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381:2497–505.

    Article  CAS  PubMed  Google Scholar 

  113. Ridker PM, Devalaraja M, Baeres FMM, Engelmann MDM, Hovingh GK, Ivkovic M, et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Lond Engl. 2021;397:2060–9.

    Article  CAS  Google Scholar 

  114. Gou T, Hu M, Xu M, Chen Y, Chen R, Zhou T, et al. Novel wine in an old bottle: preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases. J Pharm Anal. 2023;13:563–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gaudet D, Alexander VJ, Baker BF, Brisson D, Tremblay K, Singleton W, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373:438–47.

    Article  CAS  PubMed  Google Scholar 

  116. Packard CJ, Pirillo A, Tsimikas S, Ference BA, Catapano AL. Exploring apolipoprotein C-III: pathophysiological and pharmacological relevance. Cardiovasc Res. 2024;119:2843–57.

    Article  PubMed  Google Scholar 

  117. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381:1609–20.

    Article  CAS  PubMed  Google Scholar 

  118. TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute, Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31.

    Article  Google Scholar 

  119. Paik J, Duggan S. Volanesorsen: first global approval. Drugs. 2019;79:1349–54.

    Article  CAS  PubMed  Google Scholar 

  120. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.

    Article  PubMed  Google Scholar 

  121. Williams MC, Kwiecinski J, Doris M, McElhinney P, D’Souza MS, Cadet S, et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation. 2020;141:1452–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107:113–9.

    Article  PubMed  Google Scholar 

  123. Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.

    Article  PubMed  Google Scholar 

  124. Senders ML, Calcagno C, Tawakol A, Nahrendorf M, Mulder WJM, Fayad ZA. PET/MR imaging of inflammation in atherosclerosis. Nat Biomed Eng. 2023;7:202–20.

    Article  CAS  PubMed  Google Scholar 

  125. Dey D, Gaur S, Ovrehus KA, Slomka PJ, Betancur J, Goeller M, et al. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eur Radiol. 2018;28:2655–64.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hu Z, Liu W, Hua X, Chen X, Chang Y, Hu Y, et al. Single-cell transcriptomic atlas of different human cardiac arteries identifies cell types associated with vascular physiology. Arterioscler Thromb Vasc Biol. 2021;41:1408–27.

    Article  CAS  PubMed  Google Scholar 

  127. Nguyen AT, Gomez D, Bell RD, Campbell JH, Clowes AW, Gabbiani G, et al. Smooth muscle cell plasticity: fact or fiction?. Circ Res. 2013;112:17–22.

    Article  CAS  PubMed  Google Scholar 

  128. Alencar GF, Owsiany KM, Karnewar S, Sukhavasi K, Mocci G, Nguyen AT, et al. Stem cell pluripotency genes klf4 and oct4 regulate complex smc phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis. Circulation. 2020;142:2045–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chan JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30:1627–34.

    Article  CAS  PubMed  Google Scholar 

  130. Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci USA. 2013;110:10753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization?. Circulation. 2011;123:779–97.

    Article  PubMed  Google Scholar 

  132. Nacif MS, Kawel N, Lee JJ, Chen X, Yao J, Zavodni A, et al. Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology. 2012;264:876–83.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Tamarappoo B, Han D, Tyler J, Chakravarty T, Otaki Y, Miller R, et al. Prognostic value of computed tomography-derived extracellular volume in TAVR patients with low-flow low-gradient aortic stenosis. JACC Cardiovasc Imaging. 2020;13:2591–601.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kato S, Misumi Y, Horita N, Yamamoto K, Utsunomiya D. Clinical utility of computed tomography-derived myocardial extracellular volume fraction. A systematic review and meta-analysis. JACC Cardiovasc Imaging. 2024;17:516–28.

    Article  PubMed  Google Scholar 

  135. Stewart RAH. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;379:1388.

    Article  PubMed  Google Scholar 

  136. Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Front Cardiovasc Med. 2018;5:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ge JB, Fan WH, Zhou JM, Shi HM, Ji FS, Wu Y, et al. Efficacy and safety of Shexiang Baoxin pill (MUSKARDIA) in patients with stable coronary artery disease: a multicenter, double-blind, placebo-controlled phase IV randomized clinical trial. Chin Med J. 2021;134:185–92.

    Article  PubMed  Google Scholar 

  138. Wang X, Xing X, Huang P, Zhang Z, Zhou Z, Liang L, et al. A Chinese classical prescription Xuefu Zhuyu decoction in the treatment of coronary heart disease: an overview. Heliyon. 2024;10:e28919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yang C, Wu Y, Qian J, Li JJ. A systematic, updated review of Xuezhikang, a domestically developed lipid-lowering drug, in the application of cardiovascular diseases. Acta Pharm Sin B. 2024;14:4228–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zheng E, Madura P, Grandos J, Broncel M, Pawlos A, Woźniak E, et al. When the same treatment has different response: The role of pharmacogenomics in statin therapy. Biomed Pharmacother Biomedecine Pharmacother. 2024;170:115966.

    Article  CAS  Google Scholar 

  143. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.

    Article  CAS  PubMed  Google Scholar 

  144. Ormond KE, Mortlock DP, Scholes DT, Bombard Y, Brody LC, Faucett WA, et al. Human germline genome editing. Am J Hum Genet. 2017;101:167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Libby P, Pasterkamp G. Requiem for the “vulnerable plaque. Eur Heart J. 2015;36:2984–7.

    PubMed  Google Scholar 

  146. Lin A, Kolossváry M, Motwani M, Išgum I, Maurovich-Horvat P, Slomka PJ, et al. Artificial intelligence in cardiovascular imaging for risk stratification in coronary artery disease. Radiol Cardiothorac Imaging. 2021;3:e200512.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407–77.

    Article  PubMed  Google Scholar 

  148. Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Boden WE, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020;382:1395–407.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kazi DS, Moran AE, Coxson PG, Penko J, Ollendorf DA, Pearson SD, et al. Cost-effectiveness of PCSK9 inhibitor therapy in patients with heterozygous familial hypercholesterolemia or atherosclerotic cardiovascular disease. JAMA. 2016;316:743–53.

    Article  CAS  PubMed  Google Scholar 

  150. Rodrigues AC, Curi R, Genvigir FDV, Hirata MH, Hirata RDC. The expression of efflux and uptake transporters are regulated by statins in Caco-2 and HepG2 cells. Acta Pharmacol Sin. 2009;30:956–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vladimirova-Kitova LG, Kitov SI, Vladimirova-Kitova LG, Kitov SI. Resistance of statin therapy, and methods for its influence. Hypercholesterolemia (IntechOpen, 2015).

  152. Ndumele CE, Neeland IJ, Tuttle KR, Chow SL, Mathew RO, Khan SS, et al. A synopsis of the evidence for the science and clinical management of Cardiovascular-Kidney-Metabolic (CKM) syndrome: a scientific statement from the American Heart Association. Circulation. 2023;148:1636–64.

    Article  PubMed  Google Scholar 

  153. Liu D, Yang A, Li Y, Li Z, You P, Zhang H, et al. Targeted delivery of rosuvastatin enhances treatment of hyperhomocysteinemia-induced atherosclerosis using macrophage membrane-coated nanoparticles. J Pharm Anal. 2024;14:100937.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, et al. Advances in the study of exosomes in cardiovascular diseases. J Adv Res. 2024;66:133–53.

    Article  CAS  PubMed  Google Scholar 

  155. Li AL, Guo KZ, Yu LR, Ge J, Zhou W, Zhang JP. Intercellular communication after myocardial infarction: macrophage as the centerpiece. Ageing Res Rev. 2025;109:102757.

    Article  CAS  PubMed  Google Scholar 

  156. Amrute JM, Luo X, Penna V, Yang S, Yamawaki T, Hayat S, et al. Targeting immune-fibroblast cell communication in heart failure. Nature. 2024;635:423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tombor LS, Lautenschläger T, Glaser SF, Fischer A, Merten M, Hille SS, et al. Immunoregulatory endothelial cells interact with T cells after myocardial infarction. Circ Res. 2025;137:866–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Li G, Ni C, Wang J, Zhang F, Fu Z, Wang L, et al. Dynamic molecular atlas of cardiac fibrosis at single-cell resolution shows CD248 in cardiac fibroblasts orchestrates interactions with immune cells. Nat Cardiovasc Res. 2025;4:380–96.

    Article  CAS  PubMed  Google Scholar 

  159. Yuan W, Yu B, Yu M, Kuai R, Morin EE, Wang H, et al. Synthetic high-density lipoproteins delivering liver X receptor agonist prevent atherogenesis by enhancing reverse cholesterol transport. J Control Release. 2021;329:361–71.

    Article  CAS  PubMed  Google Scholar 

  160. Yusuf S, Joseph P, Rangarajan S, Islam S, Mente A, Hystad P, et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet. 2020;395:795–808.

    Article  PubMed  Google Scholar 

  161. Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation. 2004;109:2487–91.

    Article  PubMed  Google Scholar 

  162. Wu Y, Li Z, Yang M, Dai B, Hu F, Yang F, et al. MicroRNA-214 regulates smooth muscle cell differentiation from stem cells by targeting RNA-binding protein QKI. Oncotarget. 2017;8:19866–78.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Man JCK, van Duijvenboden K, Krijger PHL, Hooijkaas IB, van der Made I, de Gier-de Vries C, et al. Genetic dissection of a super enhancer controlling the Nppa-Nppb cluster in the heart. Circ Res. 2021;128:115–29.

    Article  CAS  PubMed  Google Scholar 

  164. Ye L, Liu J, Lei W, Ni B, Han X, Zhang Y, et al. Disruption of cTnT-mediated sarcomere-mitochondrial communication results in dilated cardiomyopathy. Circulation. 2025;152:397–415.

    Article  CAS  PubMed  Google Scholar 

  165. von Scheidt M, Adkar SS, Krefting J, Hoermann G, Meggendorfer M, Bauer S, et al. Clonal haematopoiesis of indeterminate potential and mortality in coronary artery disease. Eur Heart J. 2025:ehaf602.

  166. Parthiban P, Barrow F, Wang H, Chalise U, Araujo N, Souza-Neto F, et al. Macrophage-derived CCL24 promotes cardiac fibrosis via fibroblast CCR3. Circ Res. 2025:137:1140–56.

  167. Soliman AM. Telemedicine in the cardiovascular world: ready for the future? Methodist DeBakey Cardiovasc J. 2020;16:283–90.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Sun T, Zhan W, Wei L, Xu Z, Fan L, Zhuo Y, et al. Circulating ANGPTL3 and ANGPTL4 levels predict coronary artery atherosclerosis severity. Lipids Health Dis. 2021;20:154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature. 2016;539:479.

    Article  CAS  PubMed  Google Scholar 

  170. Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  CAS  PubMed  Google Scholar 

  171. Xu B, Tu S, Song L, Jin Z, Yu B, Fu G, et al. Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): a multicentre, randomised, sham-controlled trial. Lancet. 2021;398:2149–59.

    Article  PubMed  Google Scholar 

  172. Hu X, Zhang J, Yang S, Jiang J, Peng X, Lu D, et al. Angiography-derived fractional flow reserve versus intravascular ultrasound to guide percutaneous coronary intervention in patients with coronary artery disease (FLAVOUR II): a multicentre, randomised, non-inferiority trial. Lancet. 2025;405:1491–504.

    Article  PubMed  Google Scholar 

  173. Nurmohamed NS, Bom MJ, Jukema RA, de Groot RJ, Driessen RS, van Diemen PA, et al. AI-guided quantitative plaque staging predicts long-term cardiovascular outcomes in patients at risk for atherosclerotic CVD. JACC Cardiovasc Imaging. 2024;17:269–80.

    Article  PubMed  Google Scholar 

  174. Lee JM, Choi KH, Song YB, Lee JY, Lee SJ, Lee SY, et al. Intravascular imaging-guided or angiography-guided complex PCI. N Engl J Med. 2023;388:1668–79.

    Article  PubMed  Google Scholar 

  175. Zhang J, Yu W, Hu X, Jiang J, Li C, Sun Y, et al. Clinical relevance of discordance between physiology- and imaging-guided PCI strategies in intermediate coronary stenosis. JACC Cardiovasc Interv. 2025;18:145–53.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang province (2024C03144 to ZFX); the Hangzhou Joint Fund of the Zhejiang Provincial Natural Science Foundation of China (LHZY24H020001 to RYH), and the Medical Science and Technology Planning Project of Zhejiang Province (No.2024KY1366 to RYH).

Author information

Authors and Affiliations

Authors

Contributions

ZXQ: Conceptualization, Literature review, Writing – original draft, Visualization. RYW: Literature review, Data curation, Writing – original draft. YZ: Methodology, Validation, Writing – review & editing. HBH: Writing – review & editing, Visualization. RYH: Writing – review & editing, Funding acquisition. HY: Investigation, Formal analysis, Writing – review & editing. PHL: Resources, Supervision, Writing – review & editing. BY: Methodology, Project administration. ZFX: Supervision, Project administration, Writing – review & editing, Funding acquisition. QJH: Conceptualization, Supervision, Writing – review & editing.

Corresponding authors

Correspondence to Zhi-fei Xu or Qiao-jun He.

Ethics declarations

Competing interests

Prof. Bo Yang is the editorial board member of the journal and was not involved in the peer review or the decision making of the article. The authors declare no other competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Zx., Wang, Ry., Zhang, Y. et al. Mechanisms, precision therapies, and technological frontiers in coronary atherosclerosis: a comprehensive review. Acta Pharmacol Sin (2026). https://doi.org/10.1038/s41401-025-01729-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01729-x

Keywords

Search

Quick links