Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Secoemestrin C exerts rapid and prominent anti-breast cancer effect in triple-negative breast cancer by inducing SLX4 and YAP degradation

Abstract

Mitochondrial DNA (mtDNA) mutations are the most common cause in aberrant mitochondrion-leading cancer, exploration of direct targeting mutated mtDNA still remains incomplete. Secoemestrin C (Sec C) is epitetrathiodioxopiperazine derived from the endophytic fungus, which exhibited a rapid and prominent anti-breast cancer effect in triple-negative breast cancer (TNBC). In this study we investigated the anticancer mechanism of Sec C, especially its effect on TNBC cells. We showed that Sec C potently inhibited the viability of both TNBC (MDA-MB-231, HS578T, BT-549) and non-TNBC (MCF-7, T47D, SK-BR-3) cells in vitro with IC50 values of 1−2 μM. In MDA-MB-231 cells, treatment with Sec C (2 μM) induced DNA breakage and subsequent apoptosis. Furthermore, treatment with Sec C (2 μM) caused mtDNA damage, mitochondrial ubiquitination and subsequent mitophagy in MDA-MB-231 and MCF-7 cells. RNA-seq analysis revealed that Sec C mitigated YAP level in time and dose-dependent manner either in MDA-MB-231 and MCF-7 cells. By re-analyzing the Sec C-responsive gene network proteins, we identified SLX4 as an oncogene promoting breast cancer development, potentially by stabilizing mtDNA to suppress pathologic mitochondrion mitophagy. Specifically, Sec C initiated MDA-MB-231 cells to yield ROS that induced SLX4 ubiquitination and degradation, leading to mtDNA damage and exacerbated mitophagy and promoted YAP degradation bypassing YAP-driven DNA repair pathways. This study not only demonstrates that Sec C is a rapid and prominent anti-breast cancer drug for TNBC, but also reveals SLX4 as a novel mtDNA stabilizer supporting breast cancer progression, positioning it as both a prognostic biomarker and therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sec C exhibits potent anti-breast cancer activity in both TNBC and non-TNBC breast cancer cells.
Fig. 2: DNA breakage and subsequent apoptosis are induced by Sec C.
Fig. 3: Sec C leads to mitochondrial ubiquitination and subsequent mitophagy either in TNBC or in non-TNBC breast cancer cells.
Fig. 4: Mitochondrial DNA damage contributes to mitophagy.
Fig. 5: Activated YAP plays decisive role in Sec C-triggered DNA breakage-mediated apoptosis.
Fig. 6: SLX4-sustained mitochondrial DNA repair antagonizes mitophagy induced by Sec C.
Fig. 7: ROS-induced ubiquitination degradation of YAP and SLX4 dominates the downregulation YAP and SLX4 and anti-breast cancer effect of Sec C.
Fig. 8: Schematic diagram.

Similar content being viewed by others

References

  1. Ikeda G, Santoso MR, Tada Y, Li AM, Vaskova E, Jung J, et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J Am Coll Cardiol. 2021;77:1073–88.

    Article  CAS  PubMed  Google Scholar 

  2. Hinton AJ, Claypool SM, Neikirk K, Senoo N, Wanjalla CN, Kirabo A, et al. Mitochondrial structure and function in human heart failure. Circ Res. 2024;135:372–96.

    Article  CAS  Google Scholar 

  3. Prantl L, Eigenberger A, Gehmert S, Haerteis S, Aung T, Rachel R, et al. Enhanced resorption of liposomal packed vitamin c monitored by ultrasound. J Clin Med. 2020;9:1616.

    Article  CAS  Google Scholar 

  4. Liu Y, Shi Y. Mitochondria as a target in cancer treatment. MedComm. 2020;1:129–39.

    Article  PubMed  Google Scholar 

  5. Fontana GA, Gahlon HL. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res. 2020;48:11244–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang SC, Gopal P, Lim S, Wei X, Chandramohan A, Mangadu R, et al. Targeted degradation of PCNA outperforms stoichiometric inhibition to result in programed cell death. Cell Chem Biol. 2022;29:1601–15.

    Article  CAS  Google Scholar 

  7. Fielden J, Siegner SM, Gallagher DN, Schroder MS, Dello Stritto MR, Lam S, et al. Comprehensive interrogation of synthetic lethality in the DNA damage response. Nature. 2025;640:1093–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang C, Liu H, Feng X, Shi H, Jiang Y, Li J, et al. Research hotspots and frontiers of neoadjuvant therapy in triple-negative breast cancer: a bibliometric analysis of publications between 2002 and 2023. Int J Surg. 2024;110:4976–92.

    Article  PubMed Central  Google Scholar 

  9. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    Article  CAS  PubMed  Google Scholar 

  10. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26:1275–81.

    Article  PubMed  Google Scholar 

  11. Lichota A, Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci. 2018;19:3533.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Buyel JF. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv. 2018;36:506–20.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 2019;24:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Behroozaghdam M, Dehghani M, Zabolian A, Kamali D, Javanshir S, Hasani Sadi F, et al. Resveratrol in breast cancer treatment: From cellular effects to molecular mechanisms of action. Cell Mol Life Sci. 2022;79:539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vitasse Y, Ursenbacher S, Klein G, Bohnenstengel T, Chittaro Y, Delestrade A, et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol Rev Camb Philos Soc. 2021;96:1816–35.

    Article  PubMed  Google Scholar 

  16. Dinglasan JLN, Otani H, Doering DT, Udwary D, Mouncey NJ. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol. 2025;23:338–54.

    Article  CAS  Google Scholar 

  17. Ooike M, Nozawa K, Kawai K-I. An epitetrathiodioxopiperazine related to emestrin from Emericella foveolata. Phytochemistry. 1997;46:123–6.

    Article  CAS  Google Scholar 

  18. Wang J, Chen M, Wang M, Zhao W, Zhang C, Liu X, et al. The novel ER stress inducer Sec C triggers apoptosis by sulfating ER cysteine residues and degrading YAP via ER stress in pancreatic cancer cells. Acta Pharm Sin B. 2022;12:210–27.

    Article  CAS  PubMed  Google Scholar 

  19. Xi XM, Li Y, Shao RG, Si SY, Chen MH, Zhao WL.  The anti-cancer mechanism of secoemestrin C in liver cancer cells. Chin Med Biotechnol. 2024;19:4–12.

    Google Scholar 

  20. Li Y, Zhao WL, Si SY, Chen MH, Shao RG. The mechanism of Secoemestrin C inhibiting the proliferation and inducing apoptosis of lung adenocarcinoma cells. Chin Med Biotechnol. 2023;18:2–10.

    Google Scholar 

  21. Zhu Z, Liu M, Wang J, Shu Z, Cao J. Secoemestrin c ameliorates psoriasis-like skin inflammation in mice by suppressing the TNF-alpha/NF-kappaB signaling pathway. Curr Med Sci. 2024;44:232–40.

    Article  CAS  PubMed  Google Scholar 

  22. Kopp B, Khoury L, Audebert M. Validation of the gammaH2AX biomarker for genotoxicity assessment: a review. Arch Toxicol. 2019;93:2103–14.

    Article  CAS  PubMed  Google Scholar 

  23. Tarsounas M, Sung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol. 2020;21:284–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dias Nunes J, Demeestere I, Devos M. BRCA mutations and fertility preservation. Int J Mol Sci. 2023;25:204.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zong D, Pavani R, Nussenzweig A. New twist on BRCA1-mediated DNA recombination repair and tumor suppression. Trends Cell Biol. 2025;25:112–6.

    Google Scholar 

  26. Button RW, Roberts SL, Willis TL, Hanemann CO, Luo S. Accumulation of autophagosomes confers cytotoxicity. J Biol Chem. 2017;292:13599–614.

    Article  CAS  PubMed Central  Google Scholar 

  27. Liu J, Ma H, Wu Z, Ji Y, Liang Y. The knowns and unknowns of membrane features and changes during autophagosome-lysosome/vacuole fusion. Int J Mol Sci. 2024;25:11160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Yi H, Liao S, He J, Zhou Y, Lei Y. LC3B: A microtubule-associated protein influences disease progression and prognosis. Cytokine Growth Factor Rev. 2025;81:16–26.

    Article  CAS  PubMed  Google Scholar 

  29. Eiyama A, Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol. 2015;33:95–101.

    Article  CAS  PubMed  Google Scholar 

  30. Wei B, Wei M, Huang H, Fan T, Zhang Z, Song X. Mesenchymal stem cell-derived exosomes: a promising therapeutic strategy for age-related diseases. Cell Prolif. 2025;58:e13795.

    Article  CAS  PubMed  Google Scholar 

  31. Kaarniranta K, Pawlowska E, Szczepanska J, Jablkowska A, Blasiak J. Role of mitochondrial DNA damage in ROS-Mediated pathogenesis of age-related macular degeneration (AMD). Int J Mol Sci. 2019;20:2374.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yan C, Duanmu X, Zeng L, Liu B, Song Z. Mitochondrial DNA: distribution, mutations, and elimination. Cells. 2019;8:379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy. 2021;17:948–60.

    Article  CAS  PubMed  Google Scholar 

  34. Longchamps RJ, Castellani CA, Yang SY, Newcomb CE, Sumpter JA, Lane J, et al. Evaluation of mitochondrial DNA copy number estimation techniques. PLoS One. 2020;15:e228166.

    Article  Google Scholar 

  35. Wang J, Zhao H, Yu J, Xu X, Jing H, Li N, et al. MiR-320b/RAD21 axis affects hepatocellular carcinoma radiosensitivity to ionizing radiation treatment through DNA damage repair signaling. Cancer Sci. 2021;112:575–88.

    Article  CAS  Google Scholar 

  36. Lennicke C, Cocheme HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell. 2021;81:3691–707.

    Article  CAS  PubMed  Google Scholar 

  37. Song I, Lee J, Cho J, Jeong J, Shin D, Lee K. Degradation of Redox-Sensitive proteins including peroxiredoxins and DJ-1 is promoted by oxidation-induced conformational changes and ubiquitination. Sci Rep. 2016;6:34432.

    Article  CAS  PubMed Central  Google Scholar 

  38. Su Z, Li Y, Zhou Z, Feng B, Chen H, Zheng G. Herbal medicine for colorectal cancer treatment: molecular mechanisms and clinical applications. Cell Prolif. 2025;58:e70065.

    Article  CAS  PubMed  Google Scholar 

  39. Chang H, Ou Yang R, Su J, Nguyen TMH, Sung J, Tang M, et al. YAP nuclear translocation induced by HIF-1alpha prevents DNA damage under hypoxic conditions. Cell Death Discov. 2023;9:385.

    Article  CAS  PubMed  Google Scholar 

  40. Shu Y, Jin X, Ji M, Zhang Z, Wang X, Liang H, et al. Ku70 binding to YAP alters PARP1 ubiquitination to regulate genome stability and tumorigenesis. Cancer Res. 2024;84:2836–55.

    Article  CAS  PubMed  Google Scholar 

  41. Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell. 2006;125:1253–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2021-I2M-1-030, 2023-I2M-2-001); and Beijing Natural Science Foundation (7254505).

Author information

Authors and Affiliations

Authors

Contributions

WLZ, YX and YSC contributed to the experimental design; WLZ and LQQ contributed to data acquisition and analysis; XJZ and CHZ carried out the immunoassays, Western blot assays, and other key experiments; XWW, MYW and LL reviewed the manuscript; CZ and ZXG assisted in data analysis; WLZ and RGS obtained the funding; WLZ and XJZ wrote the manuscript.

Corresponding authors

Correspondence to Li-qiang Qi, Yong-sheng Che or Wu-li Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Xj., Xu, Y., Zhang, Ch. et al. Secoemestrin C exerts rapid and prominent anti-breast cancer effect in triple-negative breast cancer by inducing SLX4 and YAP degradation. Acta Pharmacol Sin (2026). https://doi.org/10.1038/s41401-025-01730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01730-4

Keywords

Search

Quick links