Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

VsNsbench: evaluating AlphaFold3-embed induced-fit mechanism for enhanced virtual screening

Abstract

While AlphaFold3 (AF3) extends AlphaFold2 (AF2) by predicting holo structures, it remains unclear whether its modeling process captures similar induced-fit mechanisms. In this study, we benchmarked the VS performance of ligand-induced AF3 holo structures on two datasets: a subset of DUD-E and VsNsBench designed to avoid sequence-level information leakage. On both datasets, AF3 holo structures demonstrated substantially improved enriching capability compared to AF3 apo, experimental apo, and AF2 structures. Compared to experimental holo structures, AF3 models demonstrated inferior performance on the DUD-E subset but performed slightly better on VsNsBench. Further analysis revealed that AF3’s induced modeling critically depends on the bound ligand’s affinity: high-affinity ligands produced conformations enabling excellent enrichment, while low-affinity or random ligands yielded poor performance. Moreover, direct VS using AF3 alone achieved satisfactory performance, but computational efficiency remains a major bottleneck for large-scale applications, even with single-round multiple sequence alignment (MSA) generation. In a DFG-motif kinase case study, AF3 successfully modeled inhibitor-specific conformations with a 75% success rate. These findings demonstrate that AF3 effectively incorporates induced-fit modeling, though improvement is needed, particularly for modeling multi-state conformational ensembles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The key modules of this study.
Fig. 2: Data distributions of the DUD-Esubset and VsNsBench sets.
Fig. 3: VS result on the DUD-Esubset.
Fig. 4: VS performance using receptor conformations induced by various ligands on the VsNsBench set.
Fig. 5: AF3-based virtual screening and kinase DFG motif conformation prediction.

References

  1. Lionta E, Spyrou G, Vassilatis DK, Cournia Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem. 2014;14:1923–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lyne PD. Structure-based virtual screening: an overview. Drug Discov Today. 2002;7:1047–55.

    Article  CAS  PubMed  Google Scholar 

  3. Ghosh S, Nie A, An J, Huang Z. Structure-based virtual screening of chemical libraries for drug discovery. Curr Opin Chem Biol. 2006;10:194–202.

    Article  CAS  PubMed  Google Scholar 

  4. Bender BJ, Gahbauer S, Luttens A, Lyu J, Webb CM, Stein RM, et al. A practical guide to large-scale docking. Nat Protoc. 2021;16:4799–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rueda M, Bottegoni G, Abagyan R. Recipes for the selection of experimental protein conformations for virtual screening. J Chem Inf Model. 2010;50:186–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McGovern SL, Shoichet BK. Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J Med Chem. 2003;46:2895–907.

    Article  CAS  PubMed  Google Scholar 

  7. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem. 2006;49:534–53.

    Article  CAS  PubMed  Google Scholar 

  8. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kersten C, Clower S, Barthels F. Hic sunt dracones: molecular docking in uncharted territories with structures from AlphaFold2 and RoseTTAfold. J Chem Inf Model. 2023;63:2218–25.

    Article  CAS  PubMed  Google Scholar 

  11. Akdel M, Pires DEV, Pardo EP, Janes J, Zalevsky AO, Meszaros B, et al. A structural biology community assessment of AlphaFold2 applications. Nat Struct Mol Biol. 2022;29:1056–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gu S, Yang Y, Zhao Y, Qiu J, Wang X, Tong HHY, et al. Evaluation of AlphaFold2 Structures for Hit Identification across Multiple Scenarios. J Chem Inf Model. 2024;64:3630–9.

    Article  CAS  PubMed  Google Scholar 

  13. Diaz-Rovira AM, Martin H, Beuming T, Diaz L, Guallar V, Ray SS. Are deep learning structural models sufficiently accurate for virtual screening? Application of docking algorithms to AlphaFold2 predicted structures. J Chem Inf Model. 2023;63:1668–74.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Vass M, Shi D, Abualrous E, Chambers JM, Chopra N, et al. Benchmarking refined and unrefined AlphaFold2 structures for hit discovery. J Chem Inf Model. 2023;63:1656–67.

    Article  CAS  PubMed  Google Scholar 

  15. Di Cera E. Mechanisms of ligand binding. Biophys Rev. 2020;1:011303.

    Article  Google Scholar 

  16. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem. 2012;55:6582–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ibrahim TM, Bauer MR, Boeckler FM. Applying DEKOIS 2.0 in structure-based virtual screening to probe the impact of preparation procedures and score normalization. J Cheminform. 2015;7:21.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rohrer SG, Baumann K. Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data. J Chem Inf Model. 2009;49:169–84.

    Article  CAS  PubMed  Google Scholar 

  19. Buttenschoen M, Morris GM, Deane CM. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chem Sci. 2024;15:3130–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gu S, Shen C, Zhang X, Sun H, Cai H, Luo H, et al. Benchmarking AI-powered docking methods from the perspective of virtual screening. Nat Mach Intell. 2025;7:509–20.

    Article  Google Scholar 

  21. Reau M, Langenfeld F, Zagury JF, Lagarde N, Montes M. Decoys selection in benchmarking datasets: overview and perspectives. Front Pharmacol. 2018;9:11.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47:1750–9.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Zhang O, Shen C, Qu W, Chen S, Cao H, et al. Efficient and accurate large library ligand docking with KarmaDock. Nat Comput Sci. 2023;3:789–804.

    Article  CAS  PubMed  Google Scholar 

  24. Cai H, Shen C, Jian T, Zhang X, Chen T, Han X, et al. CarsiDock: a deep learning paradigm for accurate protein-ligand docking and screening based on large-scale pre-training. Chem Sci. 2024;15:1449–71.

    Article  CAS  PubMed  Google Scholar 

  25. Shen C, Zhang X, Deng Y, Gao J, Wang D, Xu L, et al. Boosting protein-ligand binding pose prediction and virtual screening based on residue-atom distance likelihood potential and graph transformer. J Med Chem. 2022;65:10691–706.

    Article  CAS  PubMed  Google Scholar 

  26. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61:3891–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vijayan RS, He P, Modi V, Duong-Ly KC, Ma H, Peterson JR, et al. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J Med Chem. 2015;58:466–79.

    Article  CAS  PubMed  Google Scholar 

  28. Treiber DK, Shah NP. Ins and outs of kinase DFG motifs. Chem Biol. 2013;20:745–6.

    Article  CAS  PubMed  Google Scholar 

  29. Modi V, Dunbrack RL Jr. Defining a new nomenclature for the structures of active and inactive kinases. Proc Natl Acad Sci USA. 2019;116:6818–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. UniProt C. UniProt: the Universal Protein Knowledgebase in 2025. Nucleic Acids Res. 2025;53:D609–17.

    Article  Google Scholar 

  31. Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, et al. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019;47:D464–74.

    Article  CAS  PubMed  Google Scholar 

  32. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007;35:D198–201.

    Article  CAS  PubMed  Google Scholar 

  33. Landrum G, Tosco P, Kelley B. RDKit: Open-source cheminformatics. 2025; https://www.rdkit.org.

  34. Langdon SR, Brown N, Blagg J. Scaffold diversity of exemplified medicinal chemistry space. J Chem Inf Model. 2011;51:2174–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Imrie F, Bradley AR, Deane CM. Generating property-matched decoy molecules using deep learning. Bioinformatics. 2021;37:2134–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–44.

    Article  CAS  PubMed  Google Scholar 

  37. van Linden OP, Kooistra AJ, Leurs R, de Esch IJ, de Graaf C. KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. J Med Chem. 2014;57:249–77.

    Article  PubMed  Google Scholar 

  38. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–34.

    Article  PubMed  Google Scholar 

  39. Olsson MH, Sondergaard CR, Rostkowski M, Jensen JH. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput. 2011;7:525–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by “Pioneer” and “Leading Goose” R&D Program of Zhejiang (2025C01117), and the National Natural Science Foundation of China (22303081) and the Macao Science and Technology Development Fund (0043/2023/AFJ) and Macao Polytechnic University (no. RP/FCA-02/2023).

Author information

Authors and Affiliations

Authors

Contributions

YK, TJH, HXL, and SKG designed the research study. SKG constructed the dataset and wrote the code. SKG, CS, YWY, SLZ, JL, YNT, XJZ, HYD, and ZXW performed the analysis. SKG, XRW, JXG, HFZ, YSH, and GQW wrote the paper. All authors read and approved the paper.

Corresponding authors

Correspondence to Huan-xiang Liu, Ting-jun Hou or Yu Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Sk., Shen, C., Yang, Yw. et al. VsNsbench: evaluating AlphaFold3-embed induced-fit mechanism for enhanced virtual screening. Acta Pharmacol Sin (2026). https://doi.org/10.1038/s41401-025-01732-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01732-2

Keywords

Search

Quick links