Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis for cross-activation of NPFF2R by a short PrRP-related peptide

Abstract

Prolactin-releasing peptide (PrRP) is an endogenous ligand for the PrRPR, whose activation has been linked to anti-obesity effects. However, PrRP and its analogs also activate the neuropeptide FF receptor 2 (NPFF2R), which is associated with adverse cardiovascular effects. Understanding how PrRP-related peptides differentially engage these two distinct receptors is critical for developing safer, more selective therapeutics. In this study, we present cryo-EM structures of the PrRP analog GUB08248 bound to PrRPR-Gαq and NPFF2R-Gαi at resolutions of 2.45 Å and 2.85 Å, respectively. These structures reveal a conserved ligand recognition mode across both receptors, while highlighting distinct receptor-specific interactions. The NPFF2R-Gαi complex further uncovers key features of receptor activation and G protein coupling. Together, our results offer structural insights that could guide structure-based drug design strategies favoring PrRPR selectivity, thereby advancing the therapeutic potential of the PrRP-PrRPR axis for obesity treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structures of Gαq-coupled PrRPR and Gαi-coupled NPFF2R in complex with GUB08248.
Fig. 2: Molecular basis of GUB08248 recognition by PrRPR.
Fig. 3: Molecular basis of GUB08248 recognition by NPFF2R.
Fig. 4: Comparison of the GUB08248 binding mode between PrRPR and NPFF2R.
Fig. 5: Conformational changes in NPFF2R upon activation by GUB08248.
Fig. 6: G protein coupling of NPFF2R.

Data availability

The atomic coordinates and the electron microscopy maps have been deposited in the Protein Data Bank (PDB) and the Electron Microscopy Data Bank (EMDB) under accession codes 9V0X and EMD-64674 (composite map), EMD-64675 (receptor-locally refined map), and EMD-64678 (consensus map) for the GUB08248-PrRPR-Gαq complex, and 9V1H and EMD-64686 (consensus map), EMD-64690 (receptor-locally refined map), and EMD-64693 (composite map) for the GUB08248-NPFF2R-Gαi complex.

References

  1. Murray CJL, Aravkin AY, Zheng P, Abbafati C, Abbas KM, Abbasi-Kangevari M, et al. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1223–49.

    Article  Google Scholar 

  2. Pan XF, Wang LM, Pan A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021;9:373–92.

    Article  PubMed  Google Scholar 

  3. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16:19–34.

    Article  CAS  PubMed  Google Scholar 

  4. Lorente JS, Sokolov AV, Ferguson G, Schiöth HB, Hauser AS, Gloriam DE. GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2025;24:458–79.

    Article  CAS  PubMed  Google Scholar 

  5. Vilsboll T, Zdravkovic M, Le-Thi T, Krarup T, Schmitz O, Courreges JP, et al. Liraglutide, a long-acting human glucagon-like peptide-1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care. 2007;30:1608–10.

    Article  PubMed  Google Scholar 

  6. Nauck MA, Hompesch M, Filipczak R, Le TD, Zdravkovic M, Gumprecht J, et al. Five weeks of treatment with the GLP-1 analogue liraglutide improves glycaemic control and lowers body weight in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2006;114:417–23.

    Article  CAS  PubMed  Google Scholar 

  7. Lawrence CB, Celsi F, Brennand J, Luckman SM. Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat Neurosci. 2000;3:645–6.

    Article  CAS  PubMed  Google Scholar 

  8. Ellacott KL, Lawrence CB, Rothwell NJ, Luckman SM. PRL-releasing peptide interacts with leptin to reduce food intake and body weight. Endocrinology. 2002;143:368–74.

    Article  CAS  PubMed  Google Scholar 

  9. Lawrence CB, Liu YL, Stock MJ, Luckman SM. Anorectic actions of prolactin-releasing peptide are mediated by corticotropin-releasing hormone receptors. Am J Physiol Regul Integr Comp Physiol. 2004;286:R101–7.

    Article  CAS  PubMed  Google Scholar 

  10. Sun B, Fujiwara K, Adachi S, Inoue K. Physiological roles of prolactin-releasing peptide. Regul Pept. 2005;126:27–33.

    Article  CAS  PubMed  Google Scholar 

  11. Gu W, Geddes BJ, Zhang C, Foley KP, Stricker-Krongrad A. The prolactin-releasing peptide receptor (GPR10) regulates body weight homeostasis in mice. J Mol Neurosci. 2004;22:93–103.

    Article  PubMed  Google Scholar 

  12. Pflimlin E, Lear S, Lee C, Yu S, Zou H, To A, et al. Design of a long-acting and selective MEG-fatty acid stapled prolactin-releasing peptide analog. ACS Med Chem Lett. 2019;10:1166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maletinska L, Nagelova V, Ticha A, Zemenova J, Pirnik Z, Holubova M, et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int J Obes. 2015;39:986–93.

    Article  CAS  Google Scholar 

  14. Alexopoulou F, Bech EM, Pedersen SL, Thorbek DD, Leurs U, Rudkjaer LCB, et al. Lipidated PrRP31 metabolites are long acting dual GPR10 and NPFF2 receptor agonists with potent body weight lowering effect. Sci Rep. 2022;12:1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Myšková A, Sýkora D, Kuneš J, Maletínská L. Lipidization as a tool toward peptide therapeutics. Drug Deliv. 2023;30:2284685.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Engstrom M, Brandt A, Wurster S, Savola JM, Panula P. Prolactin releasing peptide has high affinity and efficacy at neuropeptide FF2 receptors. J Pharmacol Exp Ther. 2003;305:825–32.

    Article  PubMed  Google Scholar 

  17. Samson WK, Resch ZT, Murphy TC. A novel action of the newly described prolactin-releasing peptides: cardiovascular regulation. Brain Res. 2000;858:19–25.

    Article  CAS  PubMed  Google Scholar 

  18. Horiuchi J, Saigusa T, Sugiyama N, Kanba S, Nishida Y, Sato Y, et al. Effects of prolactin-releasing peptide microinjection into the ventrolateral medulla on arterial pressure and sympathetic activity in rats. Brain Res. 2002;958:201–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ma L, MacTavish D, Simonin F, Bourguignon JJ, Watanabe T, Jhamandas JH. Prolactin-releasing peptide effects in the rat brain are mediated through the neuropeptide FF receptor. Eur J Neurosci. 2009;30:1585–93.

    Article  PubMed  Google Scholar 

  20. Lee H, Feranil JB, Jose PA. An overview on renal and central regulation of blood pressure by neuropeptide FF and its receptors. Int J Mol Sci. 2024;25:13284.

  21. Li Y, Yuan Q, He X, Zhang Y, You C, Wu C, et al. Molecular mechanism of prolactin-releasing peptide recognition and signaling via its G protein-coupled receptor. Cell Discov. 2024;10:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu Z, Qiu C, Liu Y, Yan X, Li Q, Jiang S, et al. Structural insights into prolactin-releasing peptide receptor signaling and G-protein coupling selectivity. Cell Rep. 2025;44:115337.

    Article  CAS  PubMed  Google Scholar 

  23. Bonini JA, Jones KA, Adham N, Forray C, Artymyshyn R, Durkin MM, et al. Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J Biol Chem. 2000;275:39324–31.

    Article  CAS  PubMed  Google Scholar 

  24. Nehme R, Carpenter B, Singhal A, Strege A, Edwards PC, White CF, et al. Mini-G proteins: novel tools for studying GPCRs in their active conformation. PLoS One. 2017;12:e0175642.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu P, Jia MZ, Zhou XE, De Waal PW, Dickson BM, Liu B, et al. The structural basis of the dominant negative phenotype of the Gαi1β1γ2 G203A/A326S heterotrimer. Acta Pharmacol Sin. 2016;37:1259–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zivanov J, Nakane T, Scheres SH. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ. 2020;7:253–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rohou A, Grigorieff N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol. 2015;192:216–21.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods. 2017;14:290–96.

    Article  CAS  PubMed  Google Scholar 

  29. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577:706–10.

    Article  CAS  PubMed  Google Scholar 

  30. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.

    Article  CAS  PubMed  Google Scholar 

  31. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–32.

    Article  PubMed  Google Scholar 

  32. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem. 2014;35:1997–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J Chem Theory Comput. 2013;9:3878–88.

    Article  CAS  PubMed  Google Scholar 

  35. Roe DR, Cheatham TE 3rd. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9:3084–95.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao LH, Lin J, Ji SY, Zhou XE, Mao C, Shen DD, et al. Structure insights into selective coupling of G protein subtypes by a class B G protein-coupled receptor. Nat Commun. 2022;13:6670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He Q, Yuan Q, Shan H, Wu C, Gu Y, Wu K, et al. Mechanisms of ligand recognition and activation of melanin-concentrating hormone receptors. Cell Discov. 2024;10:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duan J, Shen D, Zhou XE, Bi P, Liu Q, Tan Y, et al. Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. Nat Commun. 2020;11:4121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao LH, Ma S, Sutkeviciute I, Shen DD, Zhou XE, de Waal PW, et al. Structure and dynamics of the active human parathyroid hormone receptor-1. Science. 2019;364:148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maeda S, Koehl A, Matile H, Hu H, Hilger D, Schertler GF, et al. Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nat Commun. 2018;9:3712.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boyle RG, Downham R, Ganguly T, Humphries J, Smith J, Travers S. Structure-activity studies on prolactin-releasing peptide (PrRP). Analogues of PrRP-(19–31)-peptide. J Pept Sci. 2005;11:161–5.

    Article  CAS  PubMed  Google Scholar 

  42. Roland BL, Sutton SW, Wilson SJ, Luo L, Pyati J, Huvar R, et al. Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery. Endocrinology. 1999;140:5736–45.

    Article  CAS  PubMed  Google Scholar 

  43. Rouméas L, Humbert JP, Schneider S, Doebelin C, Bertin I, Schmitt M, et al. Effects of systematic N-terminus deletions and benzoylations of endogenous RF-amide peptides on NPFF1R, NPFF2R, GPR10, GPR54 and GPR103. Peptides. 2015;71:156–61.

    Article  PubMed  Google Scholar 

  44. Jin S, Guo S, Xu Y, Li X, Wu C, He X, et al. Structural basis for recognition of 26RFa by the pyroglutamylated RFamide peptide receptor. Cell Discov. 2024;10:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen S, Wang D, Liu H, He X, Cao Y, Chen J, et al. Structural basis for hormone recognition and distinctive Gq protein coupling by the kisspeptin receptor. Cell Rep. 2024;43:114389.

    Article  CAS  PubMed  Google Scholar 

  46. Tang T, Hartig C, Chen Q, Zhao W, Kaiser A, Zhang X, et al. Structural basis for ligand recognition of the neuropeptide Y Y(2) receptor. Nat Commun. 2021;12:737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim J, Hong S, Lee H, Lee HS, Park C, Kim J, et al. Structural insights into the selective recognition of RF-amide peptides by neuropeptide FF receptor 2. EMBO Rep. 2025;26:2413–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsumoto H, Noguchi J, Horikoshi Y, Kawamata Y, Kitada C, Hinuma S, et al. Stimulation of prolactin release by prolactin-releasing peptide in rats. Biochem Biophys Res Commun. 1999;259:321–4.

    Article  CAS  PubMed  Google Scholar 

  49. Hinuma S, Habata Y, Fujii R, Kawamata Y, Hosoya M, Fukusumi S, et al. A prolactin-releasing peptide in the brain. Nature. 1998;393:272–6.

    Article  CAS  PubMed  Google Scholar 

  50. Tokita R, Nakata T, Katsumata H, Konishi S, Onodera H, Imaki J, et al. Prolactin secretion in response to prolactin-releasing peptide and the expression of the prolactin-releasing peptide gene in the medulla oblongata are estrogen dependent in rats. Neurosci Lett. 1999;276:103–6.

    Article  CAS  PubMed  Google Scholar 

  51. Seal LJ, Small CJ, Dhillo WS, Kennedy AR, Ghatei MA, Bloom SR. Prolactin-releasing peptide releases corticotropin-releasing hormone and increases plasma adrenocorticotropin via the paraventricular nucleus of the hypothalamus. Neuroendocrinology. 2002;76:70–8.

    Article  CAS  PubMed  Google Scholar 

  52. Matsumoto H, Maruyama M, Noguchi J, Horikoshi Y, Fujiwara K, Kitada C, et al. Stimulation of corticotropin-releasing hormone-mediated adrenocorticotropin secretion by central administration of prolactin-releasing peptide in rats. Neurosci Lett. 2000;285:234–38.

    Article  CAS  PubMed  Google Scholar 

  53. Maruyama M, Matsumoto H, Fujiwara K, Kitada C, Hinuma S, Onda H, et al. Immunocytochemical localization of prolactin-releasing peptide in the rat brain. Endocrinology. 1999;140:2326–33.

    Article  CAS  PubMed  Google Scholar 

  54. Talbot F, Feetham CH, Mokrosiński J, Lawler K, Keogh JM, Henning E, et al. A rare human variant that disrupts GPR10 signalling causes weight gain in mice. Nat Commun. 2023;14:1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Takayanagi Y, Matsumoto H, Nakata M, Mera T, Fukusumi S, Hinuma S, et al. Endogenous prolactin-releasing peptide regulates food intake in rodents. J Clin Invest. 2008;118:4014–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bjursell M, Lennerås M, Göransson M, Elmgren A, Bohlooly-Y M. GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem Biophys Res Commun. 2007;363:633–8.

    Article  CAS  PubMed  Google Scholar 

  57. Bechtold DA, Luckman SM. Prolactin-releasing peptide mediates cholecystokinin-induced satiety in mice. Endocrinology. 2006;147:4723–9.

    Article  CAS  PubMed  Google Scholar 

  58. Watanabe TK, Suzuki M, Yamasaki Y, Okuno S, Hishigaki H, Ono T, et al. Mutated G-protein-coupled receptor GPR10 is responsible for the hyperphagia/dyslipidaemia/obesity locus of Dmo1 in the OLETF rat. Clin Exp Pharmacol Physiol. 2005;32:355–66.

    Article  CAS  PubMed  Google Scholar 

  59. Dodd GT, Luckman SM. Physiological roles of GPR10 and PrRP signaling. Front Endocrinol. 2013;4:20.

    Article  Google Scholar 

  60. Chen CT, Dun S, Dun N, Chang JK. Prolactin-releasing peptide-immunoreactivity in A1 and A2 noradrenergic neurons of the rat medulla. Brain Res. 1999;822:276–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The cryo-EM data were collected at the Advanced Center for Electron Microscopy at Shanghai Institute of Materia Medica, Chinese Academy of Sciences. This work was supported by National Natural Science Foundation of China (32371255 and 32071203 to LHZ, 82495184, 32130022 and 82121005 to HEX, 82404881 to QNY); Natural Science Foundation of Shanghai (23ZR1475200 to LHZ); the National Key R&D Program of China (2022YFC2703105 to HEX); CAS Strategic Priority Research Program (XDB37030103 to HEX); Shanghai Municipal Science and Technology Major Project (2019SHZDZX02 to HEX); the Young Innovator Association of CAS (Y2022078 to LHZ); the Lingang Laboratory (LG-GG-202204-01 to HEX); State Key Laboratory of Drug Research (SKLDR-2023-TT-04 to HEX).

Author information

Authors and Affiliations

Contributions

XL screened the expression constructs, purified proteins, and prepared samples for structural determination, conducted structural analysis, carried out functional assays, generated figures, and drafted the initial manuscript; SL and QNY performed cryo-EM data processing, model building, and structure refinement; QH and MZ prepared cryo-EM grids; HS and XHH conducted the computational studies; YL contributed to parts of surface expression analysis; WH and KW assisted with data collection; LHZ and HEX conceived and supervised the project and revised the manuscript.

Corresponding authors

Correspondence to H. Eric Xu or Li-hua Zhao.

Ethics declarations

Competing interests

Prof H. Eric Xu is one of the Associate Editors of the journal and was not involved in the peer review or the decision making of the article. The authors declare no other competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, S., Shan, H. et al. Molecular basis for cross-activation of NPFF2R by a short PrRP-related peptide. Acta Pharmacol Sin (2026). https://doi.org/10.1038/s41401-025-01741-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01741-1

Keywords

Search

Quick links