Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Triptolide derivative STP1 ameliorates murine systemic lupus erythematosus via targeting Fyn kinase

Abstract

Triptolide has demonstrated potent immunosuppressive properties in multiple autoimmune disorders, but its severe toxicity has greatly hampered clinical application. Here, we synthesized a triptolide derivative STP1, which exhibits remarkably reduced toxicity compared with triptolide. Immune dysfunction plays a critical role in systemic lupus erythematosus (SLE), an archetypical and refractory autoimmune disorder with limited therapeutic options and suboptimal outcomes. To elucidate the drugability and effect, we investigated the therapeutic potential, safety, regulatory mechanism and target of STP1 on SLE. Our data indicated that STP1 significantly ameliorates imiquimod-induced murine SLE by reducing anti-IgG, anti-dsDNA IgG, proteinuria, and renal pathological injury. Mechanistically, STP1 exerts markedly immunosuppressive roles by modulating the differentiation of B cell into plasma cells and T cell into Tfh cells. Further investigation showed that STP1 regulates B-cell receptor and T-cell receptor signaling by directly targeting Fyn kinase responsible for its immunosuppressive activity. For safety of STP1, our findings indicated that the STP1 did not show any toxicity in biochemical parameters and organ pathological analysis in subacute toxicity experiment. The findings suggested that STP1 is an attractive novel candidate for SLE and other autoimmune diseases for thorough evaluation.

STP1, a structurally modified derivative of triptolide with improved safety, alleviates murine systemic lupus erythematosus by targeting and inhibiting Fyn, a Src kinase family member that regulates B- and T- cell responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oral administration of STP1 ameliorates imiquimod-induced murine SLE.
Fig. 2: STP1 normalizes pathogenic B cell subsets in vivo.
Fig. 3: STP1 regulates BCR-mediated B cell activation and differentiation in vitro.
Fig. 4: STP1 alters cellular responses triggered by TLRs.
Fig. 5: STP1 alters Tfh cell differentiation in vitro.
Fig. 6: Identification of Fyn as a direct target of STP1.
Fig. 7

Similar content being viewed by others

References

  1. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039.

    Article  PubMed  Google Scholar 

  2. Wang M, Chen HK, Zhang T, Zhang ZK, Xiang XW, Gao M, et al. Targeting toll-like receptor 7 as a therapeutic development strategy for systemic lupus erythematosus. Acta Pharmacol Sin B. 2024;14:4899–913.

    Article  CAS  Google Scholar 

  3. Feng YF, Chen CJ, Shao AQ, Wu L, Hu HY, Zhang TT. Emerging interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitors or degraders as therapeutic agents for autoimmune diseases and cancer. Acta Pharmacol Sin B. 2024;14:5091–105.

    Article  CAS  Google Scholar 

  4. Feng Y, Yang M, Wu HJ, Lu QJ. The pathological role of B cells in systemic lupus erythematosus: From basic research to clinical. Autoimmunity. 2020;53:56–64.

    Article  CAS  PubMed  Google Scholar 

  5. Liang YN, Chen L, Huang QY, Song YT, Fan YJ, Chen TQ, et al. Immune cells in systemic lupus erythematosus: biology and traditional Chinese medicine therapy. Acta Pharmacol Sin. 2025;46:2587–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang CQ, Ming BX, Wu XF, Wu T, Cai SZ, Hu P, et al. Sphingomyelin synthase 1 enhances BCR signaling to promote lupus-like autoimmune response. Ebiomedicine. 2019;45:578–87.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chalupny NJ, Aruffo A, Esselstyn JM, Chan PY, Bajorath J, Blake J, et al. Specific binding of Fyn and phosphatidylinositol 3-kinase to the B-cell surface glycoprotein CD19 through their Src homology-2 domains. Eur J Immunol. 1995;25:2978–84.

    Article  CAS  PubMed  Google Scholar 

  8. Mkaddem SB, Murua A, Flament H, Titeca-Beauport D, Bounaix C, Danelli L, et al. Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nat Commun. 2017;8:246.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sharma N, Akhade AS, Qadri A. Src kinases central to T-cell receptor signaling regulate TLR-activated innate immune responses from human T cells. Innate Immun. 2016;3:238–44.

    Article  Google Scholar 

  10. Dallari S, Macal M, Loureiro ME, Jo Y, Swanson L, Hesser C, et al. Src family kinases Fyn and Lyn are constitutively activated and mediate plasmacytoid dendritic cell responses. Nat Commun. 2017;8:14380.

    Article  Google Scholar 

  11. Zamoyska R, Basson A, Filby A, Legname G, Lovatt M, Seddon B. The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol Rev. 2003;191:107–18.

    Article  PubMed  Google Scholar 

  12. Zhang XZ, Mei D, Zhang LL, Wei W. Src family protein kinase controls the fate of B cells in autoimmune diseases. Inflammation. 2021;44:423–33.

    Article  CAS  PubMed  Google Scholar 

  13. Ji W, Lu YY, Ma ZY, Gan K, Liu Y, Cheng Y, et al. Triptolide attenuates inhibition of ankylosing spondylitis-derived mesenchymal stem cells on the osteoclastogenesis through modulating exosomal transfer of circ-0110634. J Orthop Transl. 2022;36:132–44.

    Google Scholar 

  14. Zhao X, Ji W, Lu Y, Liu WW, Guo F. Triptolide regulates the balance of Tfr/Tfh in lupus mice. Adv Rheumatol. 2023;63:29.

    Article  PubMed  Google Scholar 

  15. Piao X, Zhou J, Xue L. Triptolide decreases rheumatoid arthritis fibroblast-like synoviocyte proliferation, invasion, inflammation and presents a therapeutic effect in collagen-induced arthritis rats via inactivating lncRNA RP11-83J16.1 mediated URI1 and β-catenin signaling. Int Immunopharmacol. 2021;99:108010.

    Article  CAS  PubMed  Google Scholar 

  16. Xi C, Peng SJ, Wu ZP, Zhou QP, Zhou J. Toxicity of triptolide and the molecular mechanisms involved. Biomed Pharmacother. 2017;90:531–41.

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Xu YP, Fu L, Li YC, Lou LG. (5R)-5-hydroxytriptolide (LLDT-8), a novel immunosuppressant in clinical trials, exhibits potent antitumor activity via transcription inhibition. Cancer Lett. 2012;324:75–82.

    Article  CAS  PubMed  Google Scholar 

  18. Reno TA, Tong SW, Wu J, Fidler JM, Nelson R, Kim JY, et al. The triptolide derivative MRx102 inhibits Wnt pathway activation and has potent anti-tumor effects in lung cancer. BMC Cancer. 2016;16:439.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fidler JM, Li K, Chung C, Wei K, Ross JA, Gao MX, et al. PG490-88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy. Mol Cancer Ther. 2003;2:855–62.

    CAS  PubMed  Google Scholar 

  20. Yokogawa M, Takaishi M, Nakajima K, Kamijima R, Fujimoto C, Kataoka S, et al. Epicutaneous application of toll-like receptor 7 agonists leads to systemic autoimmunity in wild-type mice. Arthritis Rheumatol. 2014;66:694–706.

    Article  CAS  PubMed  Google Scholar 

  21. Chen XY, Guan JC, Lin YZ, Luo HW, Liu JY, Ma J, et al. Design and synthesis of novel sulfur-substituted triptolide with the ability to induce autophagy through inhibition of SRSF1 expression. Eur J Med Chem. 2025;287:117342.

    Article  CAS  PubMed  Google Scholar 

  22. Lee J, Park Y, Jang SG, Hong SM, Song YS, Kim MJ, et al. Baricitinib attenuates autoimmune phenotype and podocyte injury in a murine model of systemic lupus erythematosus. Front Immunol. 2021;12:704526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou Y, Li MR, Shen T, Yang TM, Shi GN, Wei YZ, et al. Celastrol targets cullin-associated and neddylation-dissociated 1 to prevent fibroblast-myofibroblast transformation against pulmonary fibrosis. ACS Chem Biol. 2022;17:2734–43.

    Article  PubMed  Google Scholar 

  24. Pawar RD, Ramanjaneyulu A, Kulkarni OP, Lech M, Segerer S, Anders HJ. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J Am Soc Nephrol. 2007;18:1721–31.

    Article  CAS  PubMed  Google Scholar 

  25. Genestier L, Taillardet M, Mondiere P, Gheit H, Bella C, Defrance T. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J Immunol. 2007;178:7779–86.

    Article  PubMed  Google Scholar 

  26. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192:1545–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weinstein JS, Bertino SA, Hernandez SG, Poholek AC, Teplitzky TB, Nowyhed HN, et al. B cells in T follicular helper cell development and function: separable roles in delivery of ICOS ligand and antigen. J Immunol. 2014;192:3166–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, et al. The immune-responses in CD40-deficient mice - impaired immunoglobulin class switching and germinal center formation. Immunity. 1994;1:167–78.

    Article  CAS  PubMed  Google Scholar 

  29. Chaimowitz NS, Falanga YT, Ryan JJ, Conrad DH. Fyn kinase is required for optimal humoral responses. PLoS One. 2013;8:e60640.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Green TP, Fennell M, Whittaker R, Curwen J, Jacobs V, Allen J, et al. Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Mol Oncol. 2009;3:248–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nygaard HB. Targeting Fyn kinase in alzheimer’s disease. Biol Psychiatry. 2018;83:369–76.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Zhang FQ, Gao YN, Wang MJ, Gao Y, Li HC, et al. Triptolide in the treatment of systemic lupus erythematosus - regulatory effects on miR-146a in B cell TLR7 signaling pathway in mice. Front Pharmacol. 2022;13:952775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao X, Tang XJ, Yan Q, Song H, Li ZT, Wang DD, et al. Triptolide ameliorates lupus via the induction of miR-125a-5p-mediating Treg upregulation. Int Immunopharmacol. 2019;71:14–21.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou R, Zhang F, He PL, Zhou WL, Wu QL, Xu JY, et al. (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide analog mediates immunosuppressive effects in vitro and in vivo. Int Immunopharmacol. 2005;5:1895–903.

    Article  CAS  PubMed  Google Scholar 

  35. Chugh R, Sangwan V, Patil SP, Dudeja V, Dawra RK, Banerjee S, et al. A preclinical evaluation of minnelide as a therapeutic agent against pancreatic cancer. Sci Transl Med. 2012;4:156ra139.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fu JM, Zang YD, Zhou Y, Chen CJ, Shao S, Hu M, et al. A novel triptolide derivative ZT01 exerts anti-inflammatory effects by targeting TAK1 to prevent macrophage polarization into pro-inflammatory phenotype. Biomed Pharmacother. 2020;126:110084.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang C, Gu CH, Peng F, Liu W, Wan JL, Xu HB, et al. Preparation and optimization of triptolide-loaded solid lipid nanoparticles for oral delivery with reduced gastric irritation. Molecules. 2013;18:13340–56.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhou LL, Du Y, Shang YT, Xiang DB, Xia XH. A novel triptolide nano-liposome with mitochondrial targeting for treatment of hepatocellular carcinoma. Int J Nanomed. 2024;19:12975–98.

    Article  CAS  Google Scholar 

  39. Cheng YX, Zhao YH, Zheng Y. Therapeutic potential of triptolide in autoimmune diseases and strategies to reduce its toxicity. Chin Med. 2021;16:114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang L, Yin HY, Jiang J, Li QL, Gao CX, Li WR, et al. A rationally designed CD19 monoclonal antibody-triptolide conjugate for the treatment of systemic lupus erythematosus. Acta Pharmacol Sin B. 2024;10:4560–76.

    Article  Google Scholar 

  41. Ma KY, Li JY, Fang YF, Lu LW. Roles of B cell-intrinsic TLR signals in systemic lupus erythematosus. Int J Mol Sci. 2015;16:13084–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meffre E, O’Connor KC. Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol Rev. 2019;292:90–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuraoka M, Snowden PB, Nojima T, Verkoczy L, Haynes BF, Kitamura D, et al. BCR and endosomal TLR signals synergize to increase AID expression and establish central B cell tolerance. Cell Rep. 2017;18:1627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim LC, Song LX, Haura EB. Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol. 2009;6:587–95.

    Article  PubMed  Google Scholar 

  45. Mamchak AA, Sullivan BM, Hou BD, Lee LM, Gilden JK, Krummel MF, et al. Normal development and activation but altered cytokine production of Fyn-deficient CD4 T cells. J Immunol. 2008;181:5374–85.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82293684, 82204410, 22277144), the National Key R&D Program of China (2020YFA0908004), CAMS Innovation Fund for Medical Science of China (2022-I2M-1-028).

Author information

Authors and Affiliations

Authors

Contributions

QYD and YZ performed the experiments; QYD analyzed the data and wrote the paper; YZW contributed to the investigation; YFF and HWL performed data visualization; HWL, YDZ, and DMZ provided the compound; YZ and TTZ provided funding support; LW, CJC, and TTZ supervised the work and revised the paper.

Corresponding authors

Correspondence to Cheng-juan Chen, Ying-da Zang or Tian-tai Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Qy., Zhou, Y., Luo, Hw. et al. Triptolide derivative STP1 ameliorates murine systemic lupus erythematosus via targeting Fyn kinase. Acta Pharmacol Sin (2026). https://doi.org/10.1038/s41401-026-01753-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-026-01753-5

Keywords

Search

Quick links