Fig. 1 | Bone Research

Fig. 1

From: Ultra-processed food targets bone quality via endochondral ossification

Fig. 1

Consumption of an ultra-processed diet leads to growth retardation and to alterations in bone architecture and biomechanical properties. The control group, which received a standard diet for growing rats, was compared to the UPF + CSD group that received a diet based on UPF and a caloric soft drink. a Body weight. b Total length from nose to tail. c Femur length at 6 and 9 weeks of age was measured using SkyScan software. d Daily caloric intake (kcal·d−1 per rat). e–o Femur µCT analyses at 9 weeks of age. e–h Trabecular parameters: bone volume fraction (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th), and trabecular separation (Tb.Sp). i–l Cortical parameters: cortical area fraction (Ct.Ar/Tt. Ar), average cortical thickness (Ct. Th), medullary area (Ma. Ar) and bone mineral density (BMD). m–o Bone porosity parameters: cortical porosity (Ct. Po), pore number (Po. N) and total pore volume (Po. V). p Light microscopy images of cross-sections of rat cortical bone representing cortical bone porosity. q Biomechanical properties: stiffness (N·mm–1), yield (N), fracture load (N), max load (N) and energy to fracture (N·mm), assessed by three-point bending test. r Representative three-point bending load-displacement curves of the control and UPF + CSD bones. s Representative 3D images of cross-sections of femur bone visualized by Amira software, with arrows indicating cortical thickness. Values are expressed as the mean ± SD, n = 8. *P < 0.05 compared to control

Back to article page