Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

Intratumour Fusobacterium nucleatum and immune response to oesophageal cancer

Abstract

Background

Experimental evidence suggests a role of intratumour Fusobacterium nucleatum in the aggressive behaviour of gastrointestinal cancer through downregulating anti-tumour immunity. We investigated the relationship between intratumour F. nucleatum and immune response to oesophageal cancer.

Methods

Utilising an unbiased database of 300 resected oesophageal cancers, we measured F. nucleatum DNA in tumour tissue using a quantitative polymerase chain reaction assay, and evaluated the relationship between the abundance of F. nucleatum and the densities of T cells (CD8 + , FOXP3 + and PDCD1 + ), as well as lymphocytic reaction patterns (follicle lymphocytic reaction, peritumoural lymphocytic reaction, stromal lymphocytic reaction and tumour-infiltrating lymphocytes) in oesophageal carcinoma tissue.

Results

F. nucleatum was significantly and inversely associated only with the peritumoural lymphocytic reaction (P = 0.0002). Compared with the F. nucleatum-absent group, the F. nucleatum-high group showed a much lower level of the peritumoural lymphocytic reaction (univariable odds ratio, 0.33; 95% confidence interval, 0.16–0.65; P = 0.0004). A multivariable model yielded a similar finding (multivariable odds ratio, 0.34; 95% confidence interval 0.16–0.69; P = 0.002).

Conclusions

Intratumour F. nucleatum is associated with a diminished peritumoural lymphocytic reaction, providing a platform for further investigations on the potential interactive roles between intratumour F. nucleatum and host immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The amount of intratumour F. nucleatum, lymphocytic reaction patterns and molecular features in oesophageal cancer.
Fig. 2: Relationship between the amount of intratumour F. nucleatum and the peritumoural lymphocytic reaction or peripheral blood lymphocyte.

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 2017;17:286–301.

    Article  CAS  PubMed  Google Scholar 

  2. Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA Jr, et al. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut. https://doi.org/10.1136/gutjnl-2017-315537 2018.

    Article  PubMed  Google Scholar 

  3. Mlecnik B, Bindea G, Angell HK, Maby P, Angelova M, Tougeron D, et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity. 2016;44:698–711.

    Article  CAS  PubMed  Google Scholar 

  4. Zheng X, Song X, Shao Y, Xu B, Hu W, Zhou Q, et al. Prognostic role of tumor-infiltrating lymphocytes in esophagus cancer: a meta-analysis. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol. 2018;45:720–32.

    Article  CAS  Google Scholar 

  5. Yagi T, Baba Y, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N, et al. PD-L1 expression, tumor-infiltrating lymphocytes, and clinical outcome in patients with surgically resected esophageal cancer. Ann Surg. https://doi.org/10.1097/SLA.0000000000002616 2017.

    Article  Google Scholar 

  6. Stein AV, Dislich B, Blank A, Guldener L, Kroll D, Seiler CA, et al. High intratumoural but not peritumoural inflammatory host response is associated with better prognosis in primary resected oesophageal adenocarcinomas. Pathology. 2017;49:30–37.

    Article  PubMed  Google Scholar 

  7. Ogino S, Giannakis M. Immunoscore for (colorectal) cancer precision medicine. Lancet. 2018;391:2084–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ammannagari N, Atasoy A. Current status of immunotherapy and immune biomarkers in gastro-esophageal cancers. J Gastrointest Oncol. 2018;9:196–207.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lordick F, Janjigian YY. Clinical impact of tumour biology in the management of gastroesophageal cancer. Nat Rev Clin Oncol. 2016;13:348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grierson P, Lim KH, Amin M. Immunotherapy in gastrointestinal cancers. J Gastrointest Oncol. 2017;8:474–84.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kiyozumi Y, Baba Y, Okadome K, Yagi T, Ishimoto T, Iwatsuki M, et al. IDO1 expression is associated with immune tolerance and poor prognosis in patients with surgically resected esophageal cancer. Ann Surg. https://doi.org/10.1097/SLA.0000000000002754 2018.

    Article  Google Scholar 

  12. Mari L, Hoefnagel SJM, Zito D, van de Meent M, van Endert P, Calpe S, et al. microRNA 125a regulates MHC-I expression on esophageal adenocarcinoma cells, associated with suppression of antitumor immune response and poor outcomes of patients. Gastroenterology. 2018;155:784–98.

    Article  CAS  PubMed  Google Scholar 

  13. Kosumi K, Baba Y, Ishimoto T, Harada K, Nakamura K, Ohuchi M, et al. APOBEC3B is an enzymatic source of molecular alterations in esophageal squamous cell carcinoma. Med Oncol. 2016;33:26.

    Article  PubMed  Google Scholar 

  14. Thomas H. Oesophageal cancer: defining tumour subtypes in oesophageal adenocarcinoma. Nat Rev Gastroenterol Hepatol. 2016;13:557.

    Article  PubMed  Google Scholar 

  15. Liu L, Tabung FK, Zhang X, Nowak JA, Qian ZR, Hamada T, et al. Diets that promote colon inflammation associate with risk of colorectal carcinomas that contain Fusobacterium nucleatum. Clin Gastroenterol Hepatol. 2018;16:1622–31 e1623.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M, Inamura K, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015;1:653–61.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mima K, Nishihara R, Nowak JA, Kim SA, Song M, Inamura K, et al. MicroRNA MIR21 and T cells in colorectal cancer. Cancer Immunol Res. 2016;4:33–40.

    Article  CAS  PubMed  Google Scholar 

  18. Kosumi K, Masugi Y, Yang J, Qian ZR, Kim SA, Li W, et al. Tumor SQSTM1 (p62) expression and T cells in colorectal cancer. Oncoimmunology. 2017;6:e1284720.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Masugi Y, Nishihara R, Hamada T, Song M, da Silva A, Kosumi K, et al. Tumor PDCD1LG2 (PD-L2) expression and the lymphocytic reaction to colorectal cancer. Cancer Immunol Res. 2017;5:1046–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masugi Y, Nishihara R, Yang J, Mima K, da Silva A, Shi Y, et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut. 2017;66:1463–73.

    Article  CAS  PubMed  Google Scholar 

  21. Jung H, Choi JK, Lee EA. Immune signatures correlate with L1 retrotransposition in gastrointestinal cancers. Genome Res. https://doi.org/10.1101/gr.231837.117 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dou R, Nishihara R, Cao Y, Hamada T, Mima K, Masuda A, et al. MicroRNA let-7, T cells, and patient survival in colorectal cancer. Cancer Immunol Res. 2016;4:927–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamamura K, Baba Y, Nakagawa S, Mima K, Miyake K, Nakamura K, et al. Human microbiome fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res. 2016;22:5574–81.

    Article  CAS  PubMed  Google Scholar 

  24. Baba Y, Iwatsuki M, Yoshida N, Watanabe M, Baba H. Review of the gut microbiome and esophageal cancer: pathogenesis and potential clinical implications. Ann gastroenterological Surg. 2017;1:99–104.

    Article  Google Scholar 

  25. Yamamura K, Baba Y, Miyake K, Nakamura K, Shigaki H, Mima K, et al. Fusobacterium nucleatum in gastroenterological cancer: evaluation of measurement methods using quantitative polymerase chain reaction and a literature review. Oncol Lett. 2017;14:6373–8.

    PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Baba Y, Ishimoto T, Iwatsuki M, Hiyoshi Y, Miyamoto Y, et al. Progress in characterizing the linkage between Fusobacterium nucleatum and gastrointestinal cancer. J Gastroenterol. 2019;54:33–41.

    Article  CAS  PubMed  Google Scholar 

  27. Di Pilato V, Freschi G, Ringressi MN, Pallecchi L, Rossolini GM, Bechi P. The esophageal microbiota in health and disease. Ann N. Y Acad Sci. 2016;1381:21–33.

    Article  PubMed  Google Scholar 

  28. Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358:1443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170:548–63 e516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mima K, Cao Y, Chan AT, Qian ZR, Nowak JA, Masugi Y, et al. Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin Transl Gastroenterol. 2016;7:e200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Repass J. Replication study: Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. eLife. 2018;7:e25801.

  32. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65:1973–80.

    Article  CAS  PubMed  Google Scholar 

  35. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42:344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaplan CW, Ma X, Paranjpe A, Jewett A, Lux R, Kinder-Haake S, et al. Fusobacterium nucleatum outer membrane proteins Fap2 and RadD induce cell death in human lymphocytes. Infect Immun. 2010;78:4773–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye X, Wang R, Bhattacharya R, Boulbes DR, Fan F, Xia L, et al. Fusobacterium nucleatum subspecies animalis influences proinflammatory cytokine expression and monocyte activation in human colorectal tumors. Cancer Prev Res. 2017;10:398–409.

    Article  CAS  Google Scholar 

  39. Bashir A, Miskeen AY, Hazari YM, Asrafuzzaman S, Fazili KM. Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut. Tumour Biol: J Int Soc Oncodev Biol Med. 2016;37:2805–10.

    Article  CAS  Google Scholar 

  40. Rice TW, Blackstone EH, Rusch VW. 7th edition of the AJCC Cancer Staging Manual: esophagus and esophagogastric junction. Ann surgical Oncol. 2010;17:1721–4.

    Article  Google Scholar 

  41. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2005;97:1180–4.

    Article  CAS  PubMed  Google Scholar 

  42. Okadome K, Baba Y, Nomoto D, Yagi T, Kalikawe R, Harada K, et al. Prognostic and clinical impact of PD-L2 and PD-L1 expression in a cohort of 437 oesophageal cancers. Br J cancer. 2020;122:1535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baba Y, Yagi T, Kosumi K, Okadome K, Nomoto D, Eto K, et al. Morphological lymphocytic reaction, patient prognosis and PD-1 expression after surgical resection for oesophageal cancer. Br J Surg. 2019;106:1352–61.

    Article  CAS  PubMed  Google Scholar 

  44. Nomoto D, Baba Y, Okadome K, Yagi T, Kalikawe R, Kiyozumi Y, et al. Prognostic impact of PD-1 on tumor-infiltrating lymphocytes in 433 resected esophageal cancers. Ann Thorac Surg. https://doi.org/10.1016/j.athoracsur.2021.01.013 2021.

    Article  PubMed  Google Scholar 

  45. Kosumi K, Baba Y, Okadome K, Yagi T, Kiyozumi Y, Yoshida N, et al. Tumor long-interspersed nucleotide element-1 methylation level and immune response to esophageal cancer. Ann Surg. https://doi.org/10.1097/SLA.0000000000003264 2019.

    Article  Google Scholar 

  46. Ogino S, Nosho K, Irahara N, Meyerhardt JA, Baba Y, Shima K, et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin Cancer Res. 2009;15:6412–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers EJ, Berk R, et al. Redefine statistical significance. Nat Hum Behav. 2018;2:6–10.

    Article  PubMed  Google Scholar 

  48. Serna G, Ruiz-Pace F, Hernando J, Alonso L, Fasani R, Landolfi S, et al. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer. Ann Oncol. 2020;31:1366–75.

    Article  CAS  PubMed  Google Scholar 

  49. Lin EW, Karakasheva TA, Hicks PD, Bass AJ, Rustgi AK. The tumor microenvironment in esophageal cancer. Oncogene. 2016;35:5337–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang Y, Lo AWI, Wong A, Chen W, Wang Y, Lin L, et al. Prognostic significance of tumor-infiltrating immune cells and PD-L1 expression in esophageal squamous cell carcinoma. Oncotarget. 2017;8:30175–89.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120:16–25.

    Article  CAS  PubMed  Google Scholar 

  53. Chen T, Li Q, Wu J, Wu Y, Peng W, Li H, et al. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism. Cancer Immunol, Immunotherapy: CII. 2018;67:1635–46.

    Article  CAS  PubMed  Google Scholar 

  54. Abed J, Maalouf N, Parhi L, Chaushu S, Mandelboim O, Bachrach G. Tumor targeting by Fusobacterium nucleatum: a pilot study and future perspectives. Front Cell Infect Microbiol. 2017;7:295.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/beta-catenin modulator Annexin. EMBO Rep. 2019;20:A1.

    Article  Google Scholar 

  56. Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappab, and up-regulating expression of microRNA-21. Gastroenterology. 2017;152:851–66 e824.

    Article  CAS  PubMed  Google Scholar 

  57. Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Topper MJ, Vaz M, Chiappinelli KB, DeStefano Shields CE, Niknafs N, Yen RC, et al. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell. 2017;171:1284–1300 e1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tan YS, Sansanaphongpricha K, Xie Y, Donnelly CR, Luo X, Heath BR, et al. Mitigating SOX2-potentiated immune escape of head and neck squamous cell carcinoma with a STING-inducing nanosatellite vaccine. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-17-2807 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2018;48:812–30 e814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hamada T, Zhang X, Mima K, Bullman S, Sukawa Y, Nowak JA, et al. Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status. Cancer Immunol Res. https://doi.org/10.1158/2326-6066.CIR-18-0174 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mehta RS, Nishihara R, Cao Y, Song M, Mima K, Qian ZR, et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 2017;3:921–7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Arima K, Zhong R, Ugai T, Zhao M, Haruki K, Akimoto N, et al. Western-style diet, pks island-carrying Escherichia coli, and colorectal cancer: analyses from two large prospective cohort studies. Gastroenterology. 2022;163:862–74.

    Article  CAS  PubMed  Google Scholar 

  64. Ogino S, Nishihara R, VanderWeele TJ, Wang M, Nishi A, Lochhead P, et al. The role of molecular pathological epidemiology in the study of neoplastic and non-neoplastic diseases in the era of precision medicine. Epidemiology. 2016;27:602–11.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hamada T, Keum N, Nishihara R, Ogino S. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. J Gastroenterol. 2017;52:265–75.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (grant number 21K08687 (to KK), 17KK0195 and 20H03755 (to YB)).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: KK, YB and HB. Collection and assembly of data: KK, YB, KY, DN, KO, TY, TT, YK, KH, KE, HS, TI, MI, SI, YM, NY and MW. Data analysis and interpretation: KK, YB and HB. Drafting of the manuscript: KK, YB, KY, DN, KO, TY, TT, YK, KH, KE, HS, TI, MI, SI, YM, NY, MW and HB. Final approval of manuscript: all authors.

Corresponding author

Correspondence to Hideo Baba.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Institutional Review Board of Kumamoto University (IRB number 1272). Written informed consent was obtained from each patient. Our study was performed in accordance with the Declaration of Helsinki.

Consent to publish

Not applicable.

Competing interests

HB is a member of the Editorial Board of the British Journal of Cancer.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosumi, K., Baba, Y., Yamamura, K. et al. Intratumour Fusobacterium nucleatum and immune response to oesophageal cancer. Br J Cancer 128, 1155–1165 (2023). https://doi.org/10.1038/s41416-022-02112-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41416-022-02112-x

This article is cited by

Search

Quick links