Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

Cancer cell extravasation requires iplectin-mediated delivery of MT1-MMP at invadopodia

Abstract

Background

Invadopodia facilitate cancer cell extravasation, but the molecular mechanism whereby invadopodia-specific proteases such as MT1-MMP are called to invadopodia is unclear.

Methods

Mass spectrometry and immunoprecipitation were used to identify interactors of MT1-MMP in metastatic breast cancer cells. After identification, siRNA and small molecule inhibitors were used to assess the effect these interactors had on cellular invasiveness. The chicken embryo chorioallantoic membrane (CAM) model was used to assess extravasation and invadopodia formation in vivo.

Results

In metastatic breast cancer cells, MT1-MMP was found to associate with plectin, a cytolinker and scaffolding protein. Complex formation between plectin and MT1-MMP launches invadopodia formation, a subtype we termed iplectin (i = invadopodial). iPlectin delivers MT1-MMP to invadopodia and is indispensable for regulating cell surface levels of the enzyme. Genetic depletion of plectin with siRNA reduced invadopodia formation and cell invasion in vitro. In vivo extravasation efficiency assays and intravital imaging revealed iplectin to be a key contributor to invadopodia ultrastructure and essential for extravasation. Pharmacologic inhibition of plectin using the small molecule Plecstatin-1 (PST-1) abrogated MT1-MMP delivery to invadopodia and extravasation efficiency.

Conclusions

Anti-metastasis therapeutic approaches that target invadopodia are possible by disrupting interactions between MT1-MMP and iplectin.

Clinical Trial Registration Number

NCT04608357

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plectin is highly expressed in human breast cancer and associates with MT1-MMP.
Fig. 2: Plectin is required for invadopodia formation and function through the recruitment of MT1-MMP.
Fig. 3: Plectin knockdown abrogates extravasation potential formation in vivo.
Fig. 4: Plecstatin-1 alters cytoskeletal networks and consequently disrupts the delivery of MT1-MMP to F-actin puncta.
Fig. 5: The plectin antagonist, plecstatin-1, is a potent inhibitor of invadopodia formation and cell invasion in multiple cell types.

Similar content being viewed by others

Data availability

The .RAW and affiliated files were deposited into the publicly available PRIDE partner database for the ProteomeXchange consortium with the data set identifier: PXD039276.

References

  1. Weaver AM. Invadopodia: Specialized cell structures for cancer invasion. Clin Exp Metastasis. 2006;23:97–105.

    Article  PubMed  Google Scholar 

  2. Murphy DA, Courtneidge SA. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol. 2011;12:413–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leong HS, Robertson AE, Stoletov K, Leith SJ, Chin CA, Chien AE, et al. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 2014;8:1558–70.

    Article  CAS  PubMed  Google Scholar 

  4. Gimona M, Buccione R, Courtneidge SA, Linder S, Lindermed S, Hall A, et al. Assembly and biological role of podosomes and invadopodia This review comes from a themed issue on Cell regulation Edited. Curr Opin Cell Biol. 2008;20:235–41.

    Article  CAS  PubMed  Google Scholar 

  5. Albiges-Rizo C, Destaing O, Fourcade B, Planus E, Block MR. Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J Cell Sci. 2009;122:3037–49.

    Article  CAS  PubMed  Google Scholar 

  6. Crowley JL, Smith TC, Fang Z, Takizawa N, Luna EJ. Supervillin reorganizes the actin cytoskeleton and increases invadopodial efficiency. Mol Biol Cell. 2009;20:948–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Augoff K, Hryniewicz-Jankowska A, Tabola R. Invadopodia: clearing the way for cancer cell invasion. Ann Transl Med. 2020;8:902.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yoneyama MS, Hatakeyama S, Habuchi T, Inoue T, Nakamura T, Funyu T, et al. Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. Eur J Cell Biol. 2014;93:157–69.

    Article  Google Scholar 

  9. Wiche G, Winter L. Plectin isoforms as organizers of intermediate filament cytoarchitecture. Bioarchitecture. 2011;1:14–20.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Osmanagic-Myers S, Wiche G. Plectin-RACK1 (receptor for activated C kinase 1) scaffolding. J Biol Chem. 2004;279:18701–10.

    Article  CAS  PubMed  Google Scholar 

  11. Perez SM, Brinton LT, Kelly KA. Plectin in cancer: from biomarker to therapeutic target. Cells. 2021;10:2246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Margiotta A, Bucci C. Role of intermediate filaments in vesicular traffic. Cells. 2016;5:20.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schoumacher M, Goldman RD, Louvard D, Vignjevic DM. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol. 2010;189:541–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saykali BA, El-Sibai M. Invadopodia, regulation, and assembly in cancer cell invasion. Cell Commun Adhes. 2014;21:207–12.

    Article  PubMed  Google Scholar 

  15. Burgstaller G, Gregor M, Winter L, Wiche G. Keeping the vimentin network under control: cell–matrix adhesion–associated plectin 1f affects cell shape and polarity of fibroblasts. Mol Biol Cell. 2010;21:3362–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fisher KE, Sacharidou A, Stratman AN, Mayo AM, Fisher SB, Mahan RD, et al. MT1-MMP- and Cdc42-dependent signaling co-regulate cell invasion and tunnel formation in 3D collagen matrices. J Cell Sci. 2009;122:4558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferrari R, Martin G, Tagit O, Guichard A, Cambi A, Voituriez R, et al. MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion. Nat Commun. 2019;10:4886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moshfegh Y, Bravo-Cordero JJ, Miskolci V, Condeelis J, Hodgson L. A Trio–Rac1–Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol. 2014;16:574–86.

  19. Jeannot P, Nowosad A, Perchey R, Callot C, Bennana E, Katsube T, et al. P27kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/cortactin pathway. Elife. 2017;6:e22207.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jiang A, Lehti K, Wang X, Weiss SJ, Keski-Oja J, Pei D. Regulation of membrane-type matrix metalloproteinase 1 activity by dynamin-mediated endocytosis. Proc Natl Acad Sci. 2001;98:13693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Williams K, Coppolino MG. Phosphorylation of membrane type 1-matrix metalloproteinase (MT1-MMP) and its vesicle-associated membrane protein 7 (VAMP7)-dependent trafficking facilitate cell invasion and migration. J Biol Chem. 2011;286:43405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grafinger OR, Gorshtein G, Stirling T, Brasher MI, Coppolino MG. β1 integrin-mediated signaling regulates MT1-MMP phosphorylation to promote tumour cell invasion. J Cell Sci. 2020;133:jcs239152.

    Article  CAS  PubMed  Google Scholar 

  23. Itoh Y, Seiki M. MT1-MMP: an enzyme with multidimensional regulation. Trends Biochem Sci. 2004;29:285–9.

    Article  CAS  PubMed  Google Scholar 

  24. Remacle A, Murphy G, Roghi C. Membrane type I-matrix metalloproteinase (MT1-MMP) is internalised by two different pathways and is recycled to the cell surface. J Cell Sci. 2003;116:3905–16.

    Article  CAS  PubMed  Google Scholar 

  25. Poincloux R, Lizarraga F, Chavrier P. Matrix invasion by tumour cells: A focus on MT1-MMP trafficking to invadopodia. J Cell Sci. 2009;122:3015–24.

    Article  CAS  PubMed  Google Scholar 

  26. Williams KC, Coppolino MG. SNARE-dependent interaction of Src, EGFR and β1 integrin regulates invadopodia formation and tumor cell invasion. J Cell Sci. 2014;127:1712–25.

    Article  CAS  PubMed  Google Scholar 

  27. Grafinger OR, Gorshtein G, Stirling T, Geddes-McAlister J, Coppolino MG. Inhibition of β1 integrin induces its association with MT1-MMP and decreases MT1-MMP internalization and cellular invasiveness. Cell Signal. 2021;83:109984.

    Article  CAS  PubMed  Google Scholar 

  28. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.

    Article  CAS  PubMed  Google Scholar 

  29. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.

    Article  CAS  PubMed  Google Scholar 

  30. Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci Rep. 2020;10:1–5.

    Article  Google Scholar 

  31. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 2016 13:9. 2016;13:731–40.

    CAS  Google Scholar 

  32. Kim Y, Williams KC, Gavin CT, Jardine E, Chambers AF, Leong HS. Quantification of cancer cell extravasation in vivo. Nat Protoc. 2016;11:937–48.

    Article  CAS  PubMed  Google Scholar 

  33. Williams KC, Cepeda MA, Javed S, Searle K, Parkins KM, Makela AV, et al. Invadopodia are chemosensing protrusions that guide cancer cell extravasation to promote brain tropism in metastasis. Oncogene. 2019;38:3598–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leong, HS, Chambers, AF & Lewis, JD Assessing Cancer Cell Migration and Metastatic Growth In Vivo in the Chick Embryo Using Fluorescence Intravital Imaging. in Methods in Molecular Biology 872 1–14 (Humana Press, Totowa, NJ, 2012).

  35. Xu H, Deng H, Li Z, Xiang H, Zhou X. Synthesis of thioamides by catalyst‐free three‐component reactions in water. Eur J Org Chem. 2013;2013:7054–7.

    Article  CAS  Google Scholar 

  36. Hanif M, Moon S, Sullivan MP, Movassaghi S, Kubanik M, Goldstone DC, et al. Anticancer activity of Ru- and Os(arene) compounds of a maleimide-functionalized bioactive pyridinecarbothioamide ligand. J Inorg Biochem. 2016;165:100–7.

    Article  CAS  PubMed  Google Scholar 

  37. Meier SM, Hanif M, Adhireksan Z, Pichler V, Novak M, Jirkovsky E, et al. Novel metal(II) arene 2-pyridinecarbothioamides: a rationale to orally active organometallic anticancer agents. Chem Sci. 2013;4:1837.

    Article  CAS  Google Scholar 

  38. Wiche G. Role of plectin in cytoskeleton organization and dynamics. J Cell Sci. 1998;111:2477–86.

    Article  CAS  PubMed  Google Scholar 

  39. Park SJ, Yoon BH, Kim SK, Kim SY. GENT2: An updated gene expression database for normal and tumor tissues. BMC Med Genomics. 2019;12:1–8.

    Article  CAS  Google Scholar 

  40. Vijayakumar S, Erdjument-Bromage H, Tempst P, Al-Awqati Q. Role of integrins in the assembly and function of hensin in intercalated cells. J Am Soc Nephrol. 2008;19:1079–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meier SM, Kreutz D, Winter L, Klose MHM, Cseh K, Weiss T, et al. An organoruthenium anticancer agent shows unexpected target selectivity for plectin. Angew Chem. 2017;129:8379–83.

    Article  Google Scholar 

  42. Wernitznig D, Meier-Menches SM, Cseh K, Theiner S, Wenisch D, Schweikert A, et al. Plecstatin-1 induces an immunogenic cell death signature in colorectal tumour spheroids. Metallomics. 2020;12:2121–33.

    Article  CAS  PubMed  Google Scholar 

  43. Chen W-T. Transmembrane interactions at cell adhesion and invasion sites. Cell Differ Dev. 1990;32:329–35.

    Article  CAS  PubMed  Google Scholar 

  44. Giancotti FG, Ruoslahti E. Integrin signaling. Science (1979). 1999;285:1028–32.

    CAS  Google Scholar 

  45. Aoudjit F, Vuori K. Integrin signaling in cancer cell survival and chemoresistance. Chemother Res Pr. 2012;2012:1–16.

    Google Scholar 

  46. Greco MR, Moro L, Forciniti S, Alfarouk K, Cannone S, Cardone RA, et al. Integrin-linked kinase links integrin activation to invadopodia function and invasion via the p(T567)-Ezrin/NHERF1/NHE1 Pathway. Int J Mol Sci. 2021;22:2162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Elliott CE, Becker B, Oehler S, Castañón MJ, Hauptmann R, Wiche G. Plectin transcript diversity: identification and tissue distribution of variants with distinct first coding exons and rodless isoforms. Genomics. 1997;42:115–25.

    Article  CAS  PubMed  Google Scholar 

  48. Ketema M, Secades P, Kreft M, Nahidiazar L, Janssen H, Jalink K, et al. The rod domain is not essential for the function of plectin in maintaining tissue integrity. Mol Biol Cell. 2015;26:2402–17.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Andrä K, Nikolic B, Stöcher M, Drenckhahn D, Wiche G. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev. 1998;12:3442.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fontao L, Geerts D, Kulkman I, Koster J, Kramer D, Sonnenberg A. The interaction of plectin with actin: evidence for cross-linking of actin filaments by dimerization of the actin-binding domain of plectin. J Cell Sci. 2001;114:2065–76.

    Article  CAS  PubMed  Google Scholar 

  51. Wiche G. Plectin-mediated intermediate filament functions: why isoforms matter. Cells. 2021;10:2154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Remacle AG, Rosanov DV, Baciu PC, Chekanov AV, Golubkov VS, Strongin AY. The transmembrane domain is essential for the microtubular trafficking of membrane type-1 matrix metalloproteinase (MT1-MMP). J Cell Sci. 2005;118:4975–84.

    Article  CAS  PubMed  Google Scholar 

  53. Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rossé C, Chavrier P. Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell invasion. Annu Rev Cell Dev Biol. 2016;32:555–76.

    Article  CAS  PubMed  Google Scholar 

  54. Ferrari R, Infante E, Chavrier P. Nucleus–invadopodia duo during cancer invasion. Trends Cell Biol. 2019;29:93–96.

    Article  CAS  PubMed  Google Scholar 

  55. Hey S, Ratt A, Linder S. There and back again: Intracellular trafficking, release and recycling of matrix metalloproteinases. Biochimica et Biophys Acta (BBA) - Mol Cell Res. 2022;1869:119189.

    Article  CAS  Google Scholar 

  56. Dutta D, Donaldson JG. Rab and Arf G proteins in endosomal trafficking. in Method Cell Biol. 2015;130:27–38.

  57. Linder S, Scita G. RABGTPases in MT1-MMP trafficking and cell invasion: physiology versus pathology. Small GTPases. 2015;6:145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kurzchalia TV, Gorvel JP, Dupree P, Parton R, Kellner R, Houthaeve T, et al. Interactions of rab5 with cytosolic proteins. J Biol Chem. 1992;267:18419–23.

    Article  CAS  PubMed  Google Scholar 

  59. Schaedel L, Lorenz C, Schepers AV, Klumpp S, Köster S. Vimentin intermediate filaments stabilize dynamic microtubules by direct interactions. Nat Commun 2021 12:1. 2021;12:1–12.

    Google Scholar 

  60. Gan Z, Ding L, Burckhardt CJ, Lowery J, Zaritsky A, Sitterley K, et al. Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration. Cell Syst. 2016;3:252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pahwa S, Stawikowski MJ, Fields GB. Monitoring and inhibiting MT1-MMP during cancer initiation and progression. Cancers (Basel). 2014;6:416–35.

    Article  PubMed  Google Scholar 

  62. Winer A, Adams S, Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol Cancer Ther. 2018;17:1147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mahmud KM, Niloy MS, Shakil MS, Islam MA. Ruthenium complexes: an alternative to platinum drugs in colorectal cancer treatment. Pharmaceutics. 2021;13:1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnstone TC, Suntharalingam K, Lippard SJ. Third row transition metals for the treatment of cancer. Philos Trans R Soc A: Math Phys Eng Sci. 2015;373:20140185.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ms. Lilianne Gee for assisting with sample preparation for mass spectrometry analysis and Dr. Jonathan Kriger of Bioinformatics Solutions Inc. for operation of the mass spectrometer.

Funding

HSL and KJJ are supported by a Kavelman-Fonn Foundation Operating Grant. HSL received support from CIHR (Project Grant 480369) and a Movember/PCC grant (PC-RS16). MGC received support from NSERC (Discovery Grant 05199). JFT received support from NSERC (Discovery Grant 06338).

Author information

Authors and Affiliations

Authors

Contributions

ORG performed experiments, collected and analyzed data, prepared figures, and drafted the manuscript. JJH performed experiments, collected and analyzed data, prepared figures, and edited the manuscript. YM assisted in the establishment of the Primary-BM cell line. JG-M planned experiments and performed data analysis for mass spectrometry profiling. SM prepared and maintained avian embryos. YL performed experiments. MS performed experiments. BS assisted in cell culture and establishment of the zsGreen-MDA-MB-231 and zsGreen-Primary-BM cell lines. GT established the Primary-BM cell line. NL assisted in the establishment of the Primary-BM cell line. JFT planned experiments, drafted, and edited the manuscript. MGC planned experiments. KJJ assisted in the establishment of the Primary-BM cell line. HSL planned experiments, drafted, and edited the manuscript.

Corresponding author

Correspondence to Hon S. Leong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Patients were consented for use of their tumor tissue with Sunnybrook REB approval (SUN-2047) for NCT04608357. The study was performed in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grafinger, O.R., Hayward, J.J., Meng, Y. et al. Cancer cell extravasation requires iplectin-mediated delivery of MT1-MMP at invadopodia. Br J Cancer 131, 931–943 (2024). https://doi.org/10.1038/s41416-024-02782-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41416-024-02782-9

This article is cited by

Search

Quick links