Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

The EXO1/Polη/Polι axis as a promising target for miR-3163-mediated attenuation of cancer stem-like cells in non-small cell lung carcinoma

Abstract

Background

Cancer stem-like cells (CSLCs) drive tumour progression and chemoresistance. The concerted efforts of EXO1 and TLS polymerases safeguard DNA integrity against chemotherapeutic drugs. In absence of potential drug targets, non-small cell lung carcinoma (NSCLC) patients have few therapeutic options. In current scenario, microRNAs offer a potential avenue for eradicating CSLCs.

Methods

EXO1 downregulation impact on CSLCs expansion was assessed via flow cytometry. Co-localisation of EXO1, Polη and Polι was validated through co-immunoprecipitation and confocal-imaging. The effects of co-downregulation of Polη and Polι on CSLC survival, repair synthesis, and mutagenesis were evaluated using flow cytometry and immunohistochemistry in cell lines and xenografts. MicroRNA targeting EXO1 was studied for its role in CSLCs regulation.

Results

EXO1 downregulation in NSCLC CSLCs induces DNA lesions, triggering apoptosis and enhances cisplatin sensitivity. It collaborates with Polη and Polι in DNA repair, contributing to cisplatin resistance in CSLCs. Absence of Polη and Polι impairs repair and reduces cisplatin-induced mutagenesis. Co-downregulation of Polη and Polι in xenografts reduces tumour proliferation significantly. MiR-3163 overexpression sensitises CSLCs to cisplatin via targeting EXO1/Polη/Polι axis, as shown in mechanistic studies.

Conclusion

This study unveils a novel regulatory pathway involving EXO1/Polη/Polι axis and miR-3163, providing insights into CSLCs regulation in NSCLC.

EXO1/Polη/Polι axis targeted by miR-3163, resulting in the inhibition of cell growth and induction of apoptosis in NSCLC CSLCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EXO1 is required for CSLCs maintenance, and its downregulation reduces stem cell properties and inhibits CSC enrichment in NSCLC.
Fig. 2: Impairment of EXO1 recruitment modulates TLS pathway, leading to enhanced cisplatin induced DNA damage, cell cycle arrest and apoptosis in lung CSLCs.
Fig. 3: EXO1 dependant processing promotes the recruitment of Polη and facilitates interaction with both Polη and Polι in NSCLC cell lines.
Fig. 4: Co-downregulation of TLS polymerases Polη and Polι limits CSLCs enrichment and decreases CSCs resistance to cisplatin.
Fig. 5: Coordinated activity of TLS polymerases in repair synthesis and mutagenesis following cisplatin treatment.
Fig. 6: Downregulation of TLS polymerases Polη and Polι inhibits cancer cell proliferation in vivo.
Fig. 7: miR-3163 inhibits CSCs by modulating EXO1/Polη/Polι axis through direct targeting EXO1 and induces apoptosis.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, et al. In vitro models of cancer stem cells and clinical applications. BMC Cancer. 2016;16:738.

    Article  Google Scholar 

  2. Wang C, Kulkarni P, Salgia R. Combined checkpoint inhibition and chemotherapy: new era of 1st-line treatment for non-small-cell lung cancer. Mol Ther Oncolytics. 2019;13:1–6.

  3. Kamal A, Wessel M, Wyant T, Zhang Q, Alteri R, Lubejko B, et al. Lung cancer—non-small cell: statistics. 2023. https://www.cancer.net/cancer-types/lung-cancer-non-small-cell/statistics.

  4. Zhou J, Wang Y, Wang Y, Yin X, He Y, Chen L, et al. FOXM1 modulates cisplatin sensitivity by regulating EXO1 in ovarian cancer. PLoS ONE. 2014;9:e96989.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhou C-S, Feng M-T, Chen X, Gao Y, Chen L, Li L-D, et al. Exonuclease 1 (EXO1) is a potential prognostic biomarker and correlates with immune infiltrates in lung adenocarcinoma. Onco Targets Ther. 2021;14:1033–48.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu J, Zhang J. Elevated EXO1 expression is associated with breast carcinogenesis and poor prognosis. Ann Transl Med. 2021;9:135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Rein K, Yanez DA, Terré B, Palenzuela L, Aivio S, Wei K, et al. EXO1 is critical for embryogenesis and the DNA damage response in mice with a hypomorphic Nbs1 allele. Nucleic Acids Res. 2015;43:7371–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. He D, Li T, Sheng M, Yang B. Exonuclease 1 (Exo1) participates in mammalian non-homologous end joining and contributes to drug resistance in ovarian cancer. Med Sci Monit. 2020;26:e918751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mao P, Wu S, Fan Y. Upregulation of exonuclease 1 caused by homology-dependent repair confers cisplatin resistance to gastric cancer cells. Can J Physiol Pharm. 2022;100:903–14.

    Article  CAS  Google Scholar 

  10. Sertic S, Mollica A, Campus I, Roma S, Tumini E, Aguilera A, et al. Coordinated activity of Y family TLS polymerases and EXO1 protects non-S phase cells from UV-induced cytotoxic lesions. Mol Cell. 2018;70:34–47.e4.

    Article  PubMed  CAS  Google Scholar 

  11. Pilzecker B, Jacobs H. Mutating for good: DNA damage responses during somatic hypermutation. Front Immunol. 2019;10:438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Goodman MF, Woodgate R. Translesion DNA polymerases. Cold Spring Harb Perspect Biol. 2013;5:a010363.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Srivastava A, Han C, Zhao R, Cui T, Dai Y, Mao H, et al. Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells. Proc Natl Acad Sci USA. 2015;112:4411–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li L, Tian H, Cheng C, Li S, Ming L, Qi L. SiRNA of DNA polymerase iota inhibits the migration and invasion in the lung cancer cell A549. Acta Biochim Biophys Sin. 2018;50:929–33.

    Article  PubMed  CAS  Google Scholar 

  15. Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther. 2021;6:62.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bartel D. MicroRNA target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Qiu P, Guo Q, Yao Q, Chen J, Lin J. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer. PLoS ONE. 2021;16:e0254283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Delgir S, Ilkhani K, Safi A, Rahmati Y, Montazari V, Zaynali-Khasraghi Z, et al. The expression of miR-513c and miR-3163 was downregulated in tumor tissues compared with normal adjacent tissue of patients with breast cancer. BMC Med Genomics. 2021;14:180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ren H, Li Z, Tang Z, Li J, Lang X. Long noncoding MAGI2-AS3 promotes colorectal cancer progression through regulating miR-3163/TMEM106B axis. J Cell Physiol. 2020;235:4824–33.

    Article  PubMed  CAS  Google Scholar 

  20. Liu D, Zhang H, Cong J, Cui M, Ma M, Zhang F, et al. H3K27 acetylation-induced lncRNA EIF3J-AS1 improved proliferation and impeded apoptosis of colorectal cancer through miR-3163/YAP1 axis. J Cell Biochem. 2020;121:1923–33.

    Article  PubMed  CAS  Google Scholar 

  21. Su L, Han D, Wu J, Huo X. Skp2 regulates non-small cell lung cancer cell growth by Meg3 and miR-3163. Tumour Biol. 2015;37:3925–31.

    Article  PubMed  Google Scholar 

  22. Zhu W, Yamasaki H, Mironov N. Frequency of HPRT gene mutations induced by N-methyl-N X-nitro-N-nitrosoguanidine corresponds to replication error phenotypes of cell lines. Mutat Res. 1998;398:93–99.

    Article  PubMed  CAS  Google Scholar 

  23. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput Sci. 2016;2:e67.

    Article  Google Scholar 

  25. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51:D638–46.

    Article  PubMed  CAS  Google Scholar 

  27. Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, Gimotty PA, et al. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene. 2012;31:4898–911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jeter CR, Liu B, Liu X, Chen X, Liu C, Calhoun-Davis T, et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene. 2011;30:3833–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene. 2012;31:1354–65.

    Article  PubMed  CAS  Google Scholar 

  30. Wang Z, Chao Z, Wang Q, Zou F, Song T, Xu L, et al. EXO1/P53/SREBP1 axis-regulated lipid metabolism promotes prostate cancer progression. J Transl Med. 2024;22:104.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol. 2005;7:165–71.

    Article  PubMed  CAS  Google Scholar 

  32. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, et al. Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature. 2009;460:1132–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sarvi S, Mackinnon AC, Avlonitis N, Bradley M, Rintoul RC, Rassl DM, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74:1554–65.

    Article  PubMed  CAS  Google Scholar 

  34. Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer. 2021;124:102–14.

    Article  PubMed  Google Scholar 

  35. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48:D127–31.

    Article  PubMed  CAS  Google Scholar 

  36. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13:e0206239.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ren H, Li Z, Tang Z, Li J, Lang X. Long noncoding MAGI2-AS3 promotes colorectal cancer progression through regulating miR-3163/TMEM106B axis. JCP. 2019;235:4824–33.

    Google Scholar 

  38. Liu D, Zhang H, Cong J, Cui M, Ma M, Zhang F, et al. H3K27 acetylation-induced lncRNA EIF3J-AS1 improved proliferation and impeded apoptosis of colorectal cancer through miR-3163/YAP1 axis. J Cell Biochem. 2019;121:1923–33.

    Article  PubMed  Google Scholar 

  39. Chen YW, Cleaver JE, Hanaoka F, Chang CF, Chou KM. A novel role of DNA polymerase η in modulating cellular sensitivity to chemotherapeutic agents. Mol Cancer Res. 2006;4:257–65.

    Article  PubMed  CAS  Google Scholar 

  40. Ball LG, Hanna MD, Lambrecht AD, Mitchell BA, Ziola B, Cobb JA, et al. The Mre11-Rad50-Xrs2 complex is required for yeast DNA post replication repair. PLoS ONE. 2014;9:e109292.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kannouche PL, Wing J, Lehmann AR. Interaction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell. 2004;14:491–500.

    Article  PubMed  CAS  Google Scholar 

  42. Kannouche P, Lehmann A. Localization of Y‐family polymerases and the DNA polymerase switch in mammalian cells. Methods Enzymol. 2006;408:407–15.

    Article  PubMed  CAS  Google Scholar 

  43. Kannouche P, Henestrosa A, Coull B, Vidal A, Gray C, Zicha D, et al. Localization of DNA polymerases η and ι to the replication machinery is tightly co-ordinated in human cells. EMBO J. 2002;21:6246–56.

  44. Jia M, Wei Z, Liu P, Zhao X. Silencing of ABCG2 by microRNA-3163 inhibits multidrug resistance in retinoblastoma cancer stem cells. J Korean Med Sci. 2016;31:836–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

TM and DS are recipients of Senior Research Fellowship from CSIR. Also, the authors are thankful to Prof. Qi-En Wang and Prof. Ramesh Ganju from The Ohio State University for providing the cell lines.

Funding

The study was supported by ICMR, New Delhi (File no. 2020-4993/SCR/ADHOC-BMS).

Author information

Authors and Affiliations

Authors

Contributions

Tanima Mandal: conceptualisation, methodology, investigation, formal analysis, writing—original draft; Devendra Shukla: conceptualisation, methodology, investigation, formal analysis, writing—original draft; Md Maqsood Ahamad Khan: investigation; Senthil Kumar Ganesan: formal analysis; Amit Kumar Srivastava: conceptualisation, methodology, resources, investigation, formal analysis, validation, writing—reviewing and editing.

Corresponding author

Correspondence to Amit Kumar Srivastava.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All animal protocols were approved by the CSIR-IICB-Animal ethics committee (IICB/AEC/Meeting/July/2020/1). All methods are reported following the ARRIVE guidelines (https://arriveguidelines.org) for animal experiment reporting, with ethics approval.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, T., Shukla, D., Khan, M.M.A. et al. The EXO1/Polη/Polι axis as a promising target for miR-3163-mediated attenuation of cancer stem-like cells in non-small cell lung carcinoma. Br J Cancer 131, 1668–1682 (2024). https://doi.org/10.1038/s41416-024-02840-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41416-024-02840-2

This article is cited by

Search

Quick links