Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Targeting gut microbiota and arginase boosts MEK inhibitors’ enhancement of antitumour immunity via MHC-I upregulation in colorectal cancer

Abstract

Background

Elevating major histocompatibility complex class I (MHC-I) levels in tumour cells can boost antitumour immunity and enhance immunotherapy for colorectal cancer (CRC). Screening an FDA-approved drug library showed that MEK inhibitors (MEKis) significantly increase MHC-I expression in CRC cells, though the mechanisms and antitumour effects of MEKis, as well as their impact on gut microbiota, remain unclear.

Methods

Dual-luciferase reporter system was employed to screen MHC-I inducers. MHC-I expression was analysed using qRT-PCR, flow cytometry, and western blot. OT-I TCR transgenic mice, subcutaneous mouse tumour models, RNA-seq, and ChIP-qPCR were used to identify the underlying mechanism. Gut microbiota was depleted using antibiotics cocktail and analysed via Shotgun sequencing, 16S rRNA sequencing and nontargeted metabolomic sequencing.

Results

MEKis, particularly cobimetinib, increased MHC-I expression by inhibiting PRMT5-mediated repression of NLRC5, boosting CD8+ T cell-mediated immunity and enhancing PD-L1 blockade efficacy. Cobimetinib also altered gut microbiota, reducing L-arginine via arginase production, which compromised antitumour immunity. Arginase inhibition or L-arginine supplementation restored immune responses.

Conclusions

This study uncovers a novel mechanism of MEKi-induced MHC-I expression and highlights the interplay between gut microbiota and antitumour immunity, providing insights for MEKi-based CRC immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MEK inhibitors increase the expression of MHC-I.
Fig. 2: Cobimetinib-induced MHC-I expression enhances CD8+ T cell-dependent antitumour immunity and increases anti-PD-L1 therapy efficacy.
Fig. 3: Cobimetinib increases MHC-I levels by increasing NLRC5 expression.
Fig. 4: Cobimetinib elevates NLRC5 and HLA-A expression by decreasing PRMT5 expression.
Fig. 5: The gut microbiota and metabolites regulate the antitumour effect of MEKis.
Fig. 6: L-Arginine supplementation enhances the antitumour immunity induced by MEKis.
Fig. 7: Inhibition of arginase production by the gut microbiota enhances the antitumour immunity induced by MEKis.

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  2. Messersmith WA. Nccn guidelines updates: management of metastatic colorectal cancer. J Natl Compr Cancer Netw. 2019;17:599–601.

    Google Scholar 

  3. Zaanan A, Shi Q, Taieb J, Alberts SR, Meyers JP, Smyrk TC, et al. Role of deficient DNA mismatch repair status in patients with stage iii colon cancer treated with folfox adjuvant chemotherapy: a pooled analysis from 2 randomized clinical trials. JAMA Oncol. 2018;4:379–83.

    Article  PubMed  Google Scholar 

  4. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21:298–312.

    Article  CAS  PubMed  Google Scholar 

  5. Dendrou CA, Petersen J, Rossjohn J, Fugger L. Hla variation and disease. Nat Rev Immunol. 2018;18:325–39.

    Article  CAS  PubMed  Google Scholar 

  6. Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell. 2019;36:385–401.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stachura P, Liu W, Xu HC, Wlodarczyk A, Stencel O, Pandey P, et al. Unleashing T cell anti-tumor immunity: new potential for 5-nonloxytryptamine as an agent mediating MHC-I upregulation in tumors. Mol Cancer. 2023;22:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Franklin DA, James JL, Axelrod ML, Balko JM. MEK inhibition activates stat signaling to increase breast cancer immunogenicity via MHC-I expression. Cancer Drug Resist. 2020;3:603–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dennison L, Ruggieri A, Mohan A, Leatherman J, Cruz K, Woolman S, et al. Context-dependent immunomodulatory effects of MEK inhibition are enhanced with T-cell agonist therapy. Cancer Immunol Res. 2021;9:1187–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stopfer LE, Rettko NJ, Leddy O, Mesfin JM, Brown E, Winski S, et al. MEK inhibition enhances presentation of targetable MHC-I tumor antigens in mutant melanomas. Proc Natl Acad Sci USA. 2022;119:e2208900119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371:602–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chen YC, Chuang CH, Miao ZF, Yip KL, Liu CJ, Li LH, et al. Gut microbiota composition in chemotherapy and targeted therapy of patients with metastatic colorectal cancer. Front Oncol. 2022;12:955313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He Y, Fu L, Li Y, Wang W, Gong M, Zhang J, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8(+) T cell immunity. Cell Metab. 2021;33:988–1000.e7.

    Article  CAS  PubMed  Google Scholar 

  14. Trivieri N, Pracella R, Cariglia MG, Panebianco C, Parrella P, Visioli A, et al. BRAF(V600E) mutation impinges on gut microbial markers defining novel biomarkers for serrated colorectal cancer effective therapies. J Exp Clin Cancer Res. 2020;39:285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, et al. A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell. 2023;186:3903–20.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Wang X, Cui X, Zhuo Y, Li H, Ha C, et al. Oncoprotein SND1 hijacks nascent MHC-I heavy chain to er-associated degradation, leading to impaired CD8(+) T cell response in tumor. Sci Adv. 2020;6:eaba5412.

  18. Erkes DA, Cai W, Sanchez IM, Purwin TJ, Rogers C, Field CO, et al. Mutant braf and mek inhibitors regulate the tumor immune microenvironment via pyroptosis. Cancer Discov. 2020;10:254–69.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang P, Kawakami H, Liu W, Zeng X, Strebhardt K, Tao K, et al. Targeting CDK1 and MEK/ERK overcomes apoptotic resistance in braf-mutant human colorectal cancer. Mol Cancer Res. 2018;16:378–89.

    Article  CAS  PubMed  Google Scholar 

  20. Gu SS, Zhang W, Wang X, Jiang P, Traugh N, Li Z, et al. Therapeutically increasing MHC-I expression potentiates immune checkpoint blockade. Cancer Discov. 2021;11:1524–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, Bayir E, et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci USA. 2010;107:13794–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshihama S, Vijayan S, Sidiq T, Kobayashi KS. NLRC5/CITA: a key player in cancer immune surveillance. Trends Cancer. 2017;3:28–38.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13:37–50.

    Article  CAS  PubMed  Google Scholar 

  24. Sapir T, Shifteh D, Pahmer M, Goel S, Maitra R. Protein arginine methyltransferase 5 (PRMT5) and the ERK1/2 & PI3K pathways: a case for PRMT5 inhibition and combination therapies in cancer. Mol Cancer Res. 2021;19:388–94.

    Article  CAS  PubMed  Google Scholar 

  25. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019;16:690–704.

    Article  CAS  PubMed  Google Scholar 

  26. Wong-Rolle A, Wei HK, Zhao C, Jin C. Unexpected guests in the tumor microenvironment: microbiome in cancer. Protein Cell. 2021;12:426–35.

    Article  PubMed  Google Scholar 

  27. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16:341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 2016;167:829–42.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hernández VM, Arteaga A, Dunn MF. Diversity, properties and functions of bacterial arginases. FEMS Microbiol Rev. 2021;45:fuab034.

  30. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18:248–62.

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100–05.

    Article  CAS  PubMed Central  Google Scholar 

  32. Jalan M, Sharma A, Pei X, Weinhold N, Buechelmaier ES, Zhu Y, et al. RAD52 resolves transcription-replication conflicts to mitigate R-loop induced genome instability. Nat Commun. 2024;15:7776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hung S, Saiakhova A, Faber ZJ, Bartels CF, Neu D, Bayles I, et al. Mismatch repair-signature mutations activate gene enhancers across human colorectal cancer epigenomes. Elife. 2019;8:e40760.

  34. Liu L, Ba Y, Yang S, Zuo A, Liu S, Zhang Y, et al. FOS-driven inflammatory CAFs promote colorectal cancer liver metastasis via the SFRP1-FGFR2-HIF1 axis. Theranostics. 2025;15:4593–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li D, Bentley C, Anderson A, Wiblin S, Cleary KLS, Koustoulidou S, et al. Development of a T-cell receptor mimic antibody against wild-type p53 for cancer immunotherapy. Cancer Res. 2017;77:2699–711.

    Article  CAS  PubMed  Google Scholar 

  36. Malik A, Sharma D, Aguirre-Gamboa R, McGrath S, Zabala S, Weber C, et al. Epithelial IFNγ signalling and compartmentalized antigen presentation orchestrate gut immunity. Nature. 2023;623:1044–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Q, Wang B, Zheng Q, Li H, Meng X, Zhou F, et al. A review of gut microbiota-derived metabolites in tumor progression and cancer therapy. Adv Sci. 2023;10:e2207366.

    Article  Google Scholar 

  38. Tharp KM, Kersten K, Maller O, Timblin GA, Stashko C, Canale FP, et al. Tumor-associated macrophages restrict CD8+ T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. Nat Cancer. 2024;5:1045–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wan X, Eguchi A, Sakamoto A, Fujita Y, Yang Y, Qu Y, et al. Impact of broad-spectrum antibiotics on the gut-microbiota-spleen-brain axis. Brain Behav Immun Health. 2023;27:100573.

    Article  CAS  PubMed  Google Scholar 

  40. Smith AB, Jenior ML, Keenan O, Hart JL, Specker J, Abbas A, et al. Enterococci enhance clostridioides difficile pathogenesis. Nature. 2022;611:780–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Wende Li from Guangdong Laboratory Animals Monitoring Institute for kindly providing OT-I mice.

Funding

This work was supported by National Natural Science Foundation of China (82172337); Guangdong Basic and Applied Basic Research Foundation (2021A1515012530, 2022A1515140001, 2023A1515012377); Guangdong Provincial Clinical Research Center for Digestive Diseases (2020B1111170004); The Announcement and Recruitment Project of the Sixth Affiliated Hospital of Sun Yat-sen University (2022JBGS08); National Key Clinical Discipline.

Author information

Authors and Affiliations

Authors

Contributions

JZ, HD and LL conducted the experiments, prepared the figures, drafted the manuscript. LH, JC and WL provided technical support and suggestions for the manuscript. JL, YS, MS and YF participated in the analysis and interpretation of data. EN and CL revised the manuscript. HL, XY and CW designed the work, supervised the project and revised the manuscript. All authors have read and approved the article.

Corresponding authors

Correspondence to Huanliang Liu, Xiangling Yang or Chuangyu Wen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Written informed consent was obtained from the patients, and the protocol for using human blood samples was approved by the Institutional Review Board of the Sixth Affiliated Hospital of Sun Yat-sen University (2018ZSLYEC-008). The animal experiments in this study were evaluated and approved by the Institutional Animal Care and Use Committee (IACUC, NO: IACUC- 2022032701, 2021122201) of The Sixth Affiliated Hospital, Sun Yat‐sen University. All analyses were conducted in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Dong, H., Liang, L. et al. Targeting gut microbiota and arginase boosts MEK inhibitors’ enhancement of antitumour immunity via MHC-I upregulation in colorectal cancer. Br J Cancer 133, 809–822 (2025). https://doi.org/10.1038/s41416-025-03106-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41416-025-03106-1

Search

Quick links