Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding and addressing barriers to successful adenovirus-based virotherapy for ovarian cancer

Abstract

Ovarian cancer is the leading cause of death among women with gynecological cancer, with an overall 5-year survival rate below 50% due to a lack of specific symptoms, late stage at time of diagnosis and a high rate of recurrence after standard therapy. A better understanding of heterogeneity, genetic mutations, biological behavior and immunosuppression in the tumor microenvironment have allowed the development of more effective therapies based on anti-angiogenic treatments, PARP and immune checkpoint inhibitors, adoptive cell therapies and oncolytic vectors. Oncolytic adenoviruses are commonly used platforms in cancer gene therapy that selectively replicate in tumor cells and at the same time are able to stimulate the immune system. In addition, they can be genetically modified to enhance their potency and overcome physical and immunological barriers. In this review we highlight the challenges of adenovirus-based oncolytic therapies targeting ovarian cancer and outline recent advances to improve their potential in combination with immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Barriers to Ad vector delivery.
Fig. 2: Oncolytic Ads help overcoming immunosuppression and boosting anti-tumor immunity in EOC.

Similar content being viewed by others

References

  1. Global cancer statistics [database on the Internet]. 2008 [cited Apr 1, 2020).]. Available from: http://globocan.iarc.fr/Pages/fact_sheets_population.aspx.

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    PubMed  Google Scholar 

  3. Prat J. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int J Gynaecol Obstet. 2014;124:1–5.

    Article  PubMed  Google Scholar 

  4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  5. Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin. 2019;69:280–304.

    PubMed  Google Scholar 

  6. Menon U, Karpinskyj C, Gentry-Maharaj A. Ovarian cancer prevention and screening. Obstet Gynecol. 2018;131:909–27.

    Article  PubMed  Google Scholar 

  7. Otsuka I, Matsuura T. Screening and prevention for high-grade serous carcinoma of the ovary based on carcinogenesis-fallopian tube- and ovarian-derived tumors and incessant retrograde bleeding. Diagnostics. 2020;10:120.

  8. Ledermann JA, Raja FA, Fotopoulou C, Gonzalez-Martin A, Colombo N, Sessa C. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24:vi24–32.

    Article  PubMed  Google Scholar 

  9. Marth C, Reimer D, Zeimet AG. Front-line therapy of advanced epithelial ovarian cancer: standard treatment. Ann Oncol. 2017;28:viii36–viii9.

    Article  CAS  PubMed  Google Scholar 

  10. Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet. 2019;393:1240–53.

    Article  PubMed  Google Scholar 

  11. Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med 2017;14:9–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vaughan S, Coward JI, Bast RC Jr., Berchuck A, Berek JS, Brenton JD, et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 2011;11:719–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karnezis AN, Cho KR, Gilks CB, Pearce CL, Huntsman DG. The disparate origins of ovarian cancers: pathogenesis and prevention strategies. Nat Rev Cancer. 2017;17:65–74.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang S, Dolgalev I, Zhang T, Ran H, Levine DA, Neel BG. Both fallopian tube and ovarian surface epithelium are cells-of-origin for high-grade serous ovarian carcinoma. Nat Commun. 2019;10:5367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tan DS, Agarwal R, Kaye SB. Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. 2006;7:925–34.

    Article  PubMed  Google Scholar 

  16. Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong ST, Mok SC. Cellular and molecular processes in ovarian cancer metastasis. A review in the theme: cell and molecular processes in cancer metastasis. Am J Physiol Cell Physiol. 2015;309:C444–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cai Q, Yan L, Xu Y. Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells. Oncogene 2015;34:3315–24.

    Article  CAS  PubMed  Google Scholar 

  18. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177:1053–64.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ahmed N, Abubaker K, Findlay J, Quinn M. Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Targets. 2010;10:268–78.

    Article  CAS  PubMed  Google Scholar 

  20. Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer. 2005;5:355–66.

    Article  CAS  PubMed  Google Scholar 

  21. Kenny HA, Kaur S, Coussens LM, Lengyel E. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Investig. 2008;118:1367–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Masoumi Moghaddam S, Amini A, Morris DL, Pourgholami MH. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev. 2012;31:143–62.

    Article  CAS  PubMed  Google Scholar 

  23. Hollis RL, Gourley C. Genetic and molecular changes in ovarian cancer. Cancer Biol Med. 2016;13:236–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kurman RJ. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann Oncol. 2013;24:x16–21.

    Article  PubMed  Google Scholar 

  25. Markman M. Genomic-based therapy of gynecologic malignancies. Acta Med Acad. 2019;48:84–9.

    Article  PubMed  Google Scholar 

  26. Banerjee S, Kaye SB. New strategies in the treatment of ovarian cancer: current clinical perspectives and future potential. Clin Cancer Res. 2013;19:961–8.

    Article  CAS  PubMed  Google Scholar 

  27. Della Pepa C, Tonini G, Pisano C, Di Napoli M, Cecere SC, Tambaro R, et al. Ovarian cancer standard of care: are there real alternatives? Chin J Cancer. 2015;34:17–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tsibulak I, Zeimet AG, Marth C. Hopes and failures in front-line ovarian cancer therapy. Crit Rev Oncol/Hematol. 2019;143:14–9.

    Article  Google Scholar 

  29. Gupta S, Nag S, Aggarwal S, Rauthan A, Warrier N. Maintenance therapy for recurrent epithelial ovarian cancer: current therapies and future perspectives - a review. J Ovarian Res. 2019;12:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Áyen Á, Jiménez Martínez Y, Marchal JA, Boulaiz H. Recent progress in gene therapy for ovarian cancer. Int J Mol Sci. 2018;19:1930.

  31. Wirth T, Ylä-Herttuala S. Gene therapy used in cancer treatment. Biomedicines 2014;2:149–62.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Crystal RG. Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther. 2014;25:3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao J, Mese K, Bunz O, Ehrhardt A. State-of-the-art human adenovirus vectorology for therapeutic approaches. FEBS Lett. 2019;593:3609–22.

    Article  CAS  PubMed  Google Scholar 

  34. Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 2017;4:43–63.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Post DE, Khuri FR, Simons JW, Van, Meir EG. Replicative oncolytic adenoviruses in multimodal cancer regimens. Hum Gene Ther. 2003;14:933–46.

    Article  CAS  PubMed  Google Scholar 

  36. Liu TC, Galanis E, Kirn D. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol. 2007;4:101–17.

    Article  CAS  PubMed  Google Scholar 

  37. Buller RE, Shahin MS, Horowitz JA, Runnebaum IB, Mahavni V, Petrauskas S, et al. Long term follow-up of patients with recurrent ovarian cancer after Ad p53 gene replacement with SCH 58500. Cancer Gene Ther. 2002;9:567–72.

    Article  CAS  PubMed  Google Scholar 

  38. Buller RE, Runnebaum IB, Karlan BY, Horowitz JA, Shahin M, Buekers T, et al. A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther. 2002;9:553–66.

    Article  CAS  PubMed  Google Scholar 

  39. Modesitt SC, Ramirez P, Zu Z, Bodurka-Bevers D, Gershenson D, Wolf JK. In vitro and in vivo adenovirus-mediated p53 and p16 tumor suppressor therapy in ovarian cancer: see the biology behind: ME Murphy, the battle between tumor suppressors: is gene therapy using p16INK4a more efficacious than p53 for treatment of ovarian carcinoma?. Clin Cancer Res. 2001;7:1765–72.

    CAS  PubMed  Google Scholar 

  40. Von Gruenigen VE, Santoso JT, Coleman RL, Muller CY, Miller DS, Mathis JM. In vivostudies of adenovirus-based p53 gene therapy for ovarian cancer. Gynecologic Oncol. 1998;69:197–204.

    Article  Google Scholar 

  41. Nielsen LL, Lipari P, Dell J, Gurnani M, Hajian G. Adenovirus-mediated p53 gene therapy and paclitaxel have synergistic efficacy in models of human head and neck, ovarian, prostate, and breast cancer. Clin Cancer Res. 1998;4:835–46.

    CAS  PubMed  Google Scholar 

  42. De Munck J, Binks A, McNeish IA, Aerts JL. Oncolytic virus-induced cell death and immunity: a match made in heaven? J Leukoc Biol. 2017;102:631–43.

    Article  PubMed  Google Scholar 

  43. Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G. Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol. 2018;39:209–21.

    Article  CAS  PubMed  Google Scholar 

  44. Mathis JM, Stoff-Khalili MA, Curiel DT. Oncolytic adenoviruses – selective retargeting to tumor cells. Oncogene 2005;24:7775–91.

    Article  CAS  PubMed  Google Scholar 

  45. Jounaidi Y, Doloff JC, Waxman DJ. Conditionally replicating adenoviruses for cancer treatment. Curr Cancer Drug targets. 2007;7:285–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kirn D. Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer. Oncogene 2000;19:6660–9.

    Article  CAS  PubMed  Google Scholar 

  47. Baird SK, Aerts JL, Eddaoudi A, Lockley M, Lemoine NR, McNeish IA. Oncolytic adenoviral mutants induce a novel mode of programmed cell death in ovarian cancer. Oncogene 2008;27:3081–90.

    Article  CAS  PubMed  Google Scholar 

  48. Cheng P-H, Wechman SL, McMasters KM, Zhou HS. Oncolytic replication of E1b-deleted adenoviruses. Viruses 2015;7:5767–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ingemarsdotter CK, Baird SK, Connell CM, Öberg D, Halldén G, McNeish IA. Low-dose paclitaxel synergizes with oncolytic adenoviruses via mitotic slippage and apoptosis in ovarian cancer. Oncogene 2010;29:6051–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ingemarsdotter CK, Tookman LA, Browne A, Pirlo K, Cutts R, Chelela C, et al. Paclitaxel resistance increases oncolytic adenovirus efficacy via upregulated CAR expression and dysfunctional cell cycle control. Mol Oncol. 2015;9:791–805.

    Article  CAS  PubMed  Google Scholar 

  51. Tookman LA, Browne AK, Connell CM, Bridge G, Ingemarsdotter CK, Dowson S, et al. RAD51 and BRCA2 enhance oncolytic adenovirus type 5 activity in ovarian cancer. Mol Cancer Res. 2016;14:44–55.

    Article  CAS  PubMed  Google Scholar 

  52. Bobbs AS, Cole JM, Cowden Dahl KD. Emerging and evolving ovarian cancer animal models. Cancer Growth Metastasis. 2015;8:29–36.

    PubMed  PubMed Central  Google Scholar 

  53. Magnotti E, Marasco WA. The latest animal models of ovarian cancer for novel drug discovery. Expert Opin Drug Discov. 2018;13:249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gitto SB, Kim H, Rafail S, Omran DK, Medvedev S, Kinose Y, et al. An autologous humanized patient-derived-xenograft platform to evaluate immunotherapy in ovarian cancer. Gynecol Oncol 2020;156:222–32.

    Article  CAS  PubMed  Google Scholar 

  55. Conejo-Garcia JR, Benencia F, Courreges MC, Kang E, Mohamed-Hadley A, Buckanovich RJ, et al. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med. 2004;10:950–8.

    Article  CAS  PubMed  Google Scholar 

  56. Walton J, Blagih J, Ennis D, Leung E, Dowson S, Farquharson M, et al. CRISPR/Cas9-mediated Trp53 and Brca2 knockout to generate improved murine models of ovarian high-grade serous carcinoma. Cancer Res. 2016;76:6118–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ghaffari A, Peterson N, Khalaj K, Vitkin N, Robinson A, Francis JA, et al. STING agonist therapy in combination with PD-1 immune checkpoint blockade enhances response to carboplatin chemotherapy in high-grade serous ovarian cancer. Br J cancer. 2018;119:440–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Halldén G, Hill R, Wang Y, Anand A, Liu TC, Lemoine NR, et al. Novel immunocompetent murine tumor models for the assessment of replication-competent oncolytic adenovirus efficacy. Molecular therapy. J Am Soc Gene Ther. 2003;8:412–24.

    Article  CAS  Google Scholar 

  59. Zhang L, Hedjran F, Larson C, Perez GL, Reid T. A novel immunocompetent murine model for replicating oncolytic adenoviral therapy. Cancer Gene Ther. 2015;22:17–22.

    Article  PubMed  CAS  Google Scholar 

  60. Young AM, Archibald KM, Tookman LA, Pool A, Dudek K, Jones C, et al. Failure of translation of human adenovirus mRNA in murine cancer cells can be partially overcome by L4-100K expression in vitro and in vivo. Molecular therapy. J Am Soc Gene Ther. 2012;20:1676–88.

    Article  CAS  Google Scholar 

  61. González-Pastor R, Ashshi AM, El-Shemi AG, Dmitriev IP, Kashentseva EA, Lu ZH, et al. Defining a murine ovarian cancer model for the evaluation of conditionally-replicative adenovirus (CRAd) virotherapy agents. J Ovarian Res. 2019;12:18.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Thomas MA, Spencer JF, La Regina MC, Dhar D, Tollefson AE, Toth K, et al. Syrian hamster as a permissive immunocompetent animal model for the study of oncolytic adenovirus vectors. Cancer Res. 2006;66:1270–6.

    Article  CAS  PubMed  Google Scholar 

  63. Santos JM, Heiniö C, Cervera-Carrascon V, Quixabeira DCA, Siurala M, Havunen R, et al. Oncolytic adenovirus shapes the ovarian tumor microenvironment for potent tumor-infiltrating lymphocyte tumor reactivity. J Immunother Cancer. 2020;8:e000188.

  64. Russell WC. Adenoviruses: update on structure and function. J Gen Virol. 2009;90:1–20.

    Article  CAS  PubMed  Google Scholar 

  65. Yamamoto Y, Nagasato M, Yoshida T, Aoki K. Recent advances in genetic modification of adenovirus vectors for cancer treatment. Cancer Sci. 2017;108:831–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. You Z, Fischer DC, Tong X, Hasenburg A, Aguilar-Cordova E, Kieback DG. Coxsackievirus-adenovirus receptor expression in ovarian cancer cell lines is associated with increased adenovirus transduction efficiency and transgene expression. Cancer Gene Ther. 2001;8:168–75.

    Article  CAS  PubMed  Google Scholar 

  67. Kim JS, Lee SH, Cho YS, Choi JJ, Kim YH, Lee JH. Enhancement of the adenoviral sensitivity of human ovarian cancer cells by transient expression of coxsackievirus and adenovirus receptor (CAR). Gynecol Oncol. 2002;85:260–5.

    Article  CAS  PubMed  Google Scholar 

  68. Zeimet A, Müller-Holzner E, Schuler A, Hartung G, Berger J, Hermann M, et al. Determination of molecules regulating gene delivery using adenoviral vectors in ovarian carcinomas. Gene Ther. 2002;9:1093–100.

    Article  CAS  PubMed  Google Scholar 

  69. Beatty MS, Curiel DT. Chapter two–Adenovirus strategies for tissue-specific targeting. Adv Cancer Res. 2012;115:39–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol. 1998;72:9706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vanderkwaak TJ, Wang M, Gómez-Navarro J, Rancourt C, Dmitriev I, Krasnykh V, et al. An advanced generation of adenoviral vectors selectively enhances gene transfer for ovarian cancer gene therapy approaches. Gynecol Oncol. 1999;74:227–34.

    Article  CAS  PubMed  Google Scholar 

  72. Wu H, Han T, Lam JT, Leath CA, Dmitriev I, Kashentseva E, et al. Preclinical evaluation of a class of infectivity-enhanced adenoviral vectors in ovarian cancer gene therapy. Gene Ther. 2004;11:874–8.

    Article  PubMed  CAS  Google Scholar 

  73. Gamble LJ, Ugai H, Wang M, Borovjagin AV, Matthews QL. Therapeutic efficacy of an oncolytic adenovirus containing RGD ligand in minor capsid protein IX and Fiber, Δ24DoubleRGD, in an ovarian cancer model. J Mol Biochem 2012;1:26–39.

    PubMed  PubMed Central  Google Scholar 

  74. Bauerschmitz GJ, Lam JT, Kanerva A, Suzuki K, Nettelbeck DM, Dmitriev I, et al. Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Res. 2002;62:1266–70.

    CAS  PubMed  Google Scholar 

  75. Page JG, Tian B, Schweikart K, Tomaszewski J, Harris R, Broadt T, et al. Identifying the safety profile of a novel infectivity-enhanced conditionally replicative adenovirus, Ad5-delta24-RGD, in anticipation of a phase I trial for recurrent ovarian cancer. Am J Obstet Gynecol. 2007;196:389.e1–9. discussion.e9-10.

    Article  CAS  Google Scholar 

  76. Kimball KJ, Preuss MA, Barnes MN, Wang M, Siegal GP, Wan W, et al. A phase I study of a tropism-modified conditionally replicative adenovirus for recurrent malignant gynecologic diseases. Clin Cancer Res. 2010;16:5277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Uusi-Kerttula H, Davies J, Coughlan L, Hulin-Curtis S, Jones R, Hanna L, et al. Pseudotyped αvβ6 integrin-targeted adenovirus vectors for ovarian cancer therapies. Oncotarget 2016;7:27926–37.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Uusi-Kerttula H, Legut M, Davies J, Jones R, Hudson E, Hanna L, et al. Incorporation of peptides targeting EGFR and FGFR1 into the adenoviral fiber knob domain and their evaluation as targeted cancer therapies. Hum Gene Ther. 2015;26:320–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Strauss R, Sova P, Liu Y, Li ZY, Tuve S, Pritchard D, et al. Epithelial phenotype confers resistance of ovarian cancer cells to oncolytic adenoviruses. Cancer Res. 2009;69:5115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang H, Li ZY, Liu Y, Persson J, Beyer I, Möller T, et al. Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14. Nat Med. 2011;17:96–104.

    Article  PubMed  CAS  Google Scholar 

  81. Kuryk L, Møller A-SW Chimeric oncolytic Ad5/3 virus replicates and lyses ovarian cancer cells through desmoglein-2 cell entry receptor. J Med Virol. 2020;92:1309–15.

  82. Kanerva A, Mikheeva GV, Krasnykh V, Coolidge CJ, Lam JT, Mahasreshti PJ, et al. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res. 2002;8:275–80.

    CAS  PubMed  Google Scholar 

  83. Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, Desmond RA, Bhoola SM, et al. Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther: J Am Soc Gene Ther. 2002;5:695–704.

    Article  CAS  Google Scholar 

  84. Kanerva A, Zinn KR, Chaudhuri TR, Lam JT, Suzuki K, Uil TG, et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther: J Am Soc Gene Ther. 2003;8:449–58.

    Article  CAS  Google Scholar 

  85. Raki M, Kanerva A, Ristimaki A, Desmond RA, Chen DT, Ranki T, et al. Combination of gemcitabine and Ad5/3-Δ24, a tropism modified conditionally replicating adenovirus, for the treatment of ovarian cancer. Gene Ther. 2005;12:1198–205.

    Article  CAS  PubMed  Google Scholar 

  86. Kim KH, Dmitriev IP, Saddekni S, Kashentseva EA, Harris RD, Aurigemma R, et al. A phase I clinical trial of Ad5/3-Δ24, a novel serotype-chimeric, infectivity-enhanced, conditionally-replicative adenovirus (CRAd), in patients with recurrent ovarian cancer. Gynecol Oncol. 2013;130:518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fleischli C, Sirena D, Lesage G, Havenga MJ, Cattaneo R, Greber UF, et al. Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor. J Gen Virol. 2007;88:2925–34.

    Article  CAS  PubMed  Google Scholar 

  88. Hulin-Curtis SL, Uusi-Kerttula H, Jones R, Hanna L, Chester JD, Parker AL. Evaluation of CD46 re-targeted adenoviral vectors for clinical ovarian cancer intraperitoneal therapy. Cancer Gene Ther. 2016;23:229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kanerva A, Bauerschmitz GJ, Yamamoto M, Lam JT, Alvarez RD, Siegal GP, et al. A cyclooxygenase-2 promoter-based conditionally replicating adenovirus with enhanced infectivity for treatment of ovarian adenocarcinoma. Gene Ther. 2004;11:552–9.

    Article  CAS  PubMed  Google Scholar 

  90. Lam JT, Kanerva A, Bauerschmitz GJ, Takayama K, Suzuki K, Yamamoto M, et al. Inter-patient variation in efficacy of five oncolytic adenovirus candidates for ovarian cancer therapy. J Gene Med. 2004;6:1333–42.

    Article  CAS  PubMed  Google Scholar 

  91. Bauerschmitz GJ, Guse K, Kanerva A, Menzel A, Herrmann I, Desmond RA, et al. Triple-targeted oncolytic adenoviruses featuring the cox2 promoter, E1A transcomplementation, and serotype chimerism for enhanced selectivity for ovarian cancer cells. Mol Ther: J Am Soc Gene Ther. 2006;14:164–74.

    Article  CAS  Google Scholar 

  92. Rein DT, Breidenbach M, Kirby TO, Han T, Siegal GP, Bauerschmitz GJ, et al. A fiber-modified, secretory leukoprotease inhibitor promoter-based conditionally replicating adenovirus for treatment of ovarian cancer. Clin Cancer Res. 2005;11:1327–35.

    CAS  PubMed  Google Scholar 

  93. Takakura M, Nakamura M, Kyo S, Hashimoto M, Mori N, Ikoma T, et al. Intraperitoneal administration of telomerase-specific oncolytic adenovirus sensitizes ovarian cancer cells to cisplatin and affects survival in a xenograft model with peritoneal dissemination. Cancer Gene Ther. 2010;17:11–9.

    Article  CAS  PubMed  Google Scholar 

  94. Rein DT, Volkmer A, Beyer IM, Curiel DT, Janni W, Dragoi A, et al. Treatment of chemotherapy resistant ovarian cancer with a MDR1 targeted oncolytic adenovirus. Gynecol Oncol. 2011;123:138–46.

    Article  CAS  PubMed  Google Scholar 

  95. Zhu ZB, Makhija SK, Lu B, Wang M, Kaliberova L, Liu B, et al. Transcriptional targeting of adenoviral vector through the CXCR4 tumor-specific promoter. Gene Ther. 2004;11:645–8.

    Article  CAS  PubMed  Google Scholar 

  96. Rocconi RP, Zhu ZB, Stoff-Khalili M, Rivera AA, Lu B, Wang M, et al. Treatment of ovarian cancer with a novel dual targeted conditionally replicative adenovirus (CRAd). Gynecol Oncol. 2007;105:113–21.

    Article  CAS  PubMed  Google Scholar 

  97. Zhu ZB, Lu B, Park M, Makhija SK, Numnum TM, Kendrick JE, et al. Development of an optimized conditionally replicative adenoviral agent for ovarian cancer. Int J Oncol. 2008;32:1179–88.

    CAS  PubMed  Google Scholar 

  98. Zhang B, Liu Y, Zhang P, Wei Y, Yin X, Zheng J. A novel CRAd in combination with cisplatin enhanced the antitumor efficacy in ovarian cancer. Int J Gynecol Cancer 2011;21:1540–6.

    Article  PubMed  Google Scholar 

  99. Ko SY, Naora H. Therapeutic strategies for targeting the ovarian tumor stroma. World J Clin Cases. 2014;2:194–200.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Köbel M, Turbin D, Kalloger SE, Gao D, Huntsman DG, Gilks CB. Biomarker expression in pelvic high-grade serous carcinoma: comparison of ovarian and omental sites. Int J Gynecol Pathol. 2011;30:366–71.

    Article  PubMed  Google Scholar 

  101. Lopez MV, Rivera AA, Viale DL, Benedetti L, Cuneo N, Kimball KJ, et al. A tumor-stroma targeted oncolytic adenovirus replicated in human ovary cancer samples and inhibited growth of disseminated solid tumors in mice. Mol Ther. 2012;20:2222–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Long Q, Yang R, Lu W, Zhu W, Zhou J, Zheng C, et al. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells. Oncol Rep. 2017;37:155–62.

    Article  PubMed  Google Scholar 

  103. Bett AJ, Prevec L, Graham FL. Packaging capacity and stability of human adenovirus type 5 vectors. J Virol. 1993;67:5911–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cody JJ, Douglas JT. Armed replicating adenoviruses for cancer virotherapy. Cancer Gene Ther. 2009;16:473–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wildner O, Morris JC. The role of the E1B 55 kDa gene product in oncolytic adenoviral vectors expressing herpes simplex virus-tk: assessment of antitumor efficacy and toxicity. Cancer Res. 2000;60:4167–74.

    CAS  PubMed  Google Scholar 

  106. Hakkarainen T, Hemminki A, Curiel DT, Wahlfors J. A conditionally replicative adenovirus that codes for a TK-GFP fusion protein (Ad5Delta24TK-GFP) for evaluation of the potency of oncolytic virotherapy combined with molecular chemotherapy. Int J Mol Med. 2006;18:751–9.

    CAS  PubMed  Google Scholar 

  107. Raki M, Hakkarainen T, Bauerschmitz GJ, Särkioja M, Desmond RA, Kanerva A, et al. Utility of TK/GCV in the context of highly effective oncolysis mediated by a serotype 3 receptor targeted oncolytic adenovirus. Gene Ther. 2007;14:1380–8.

    Article  CAS  PubMed  Google Scholar 

  108. Akbulut H, Zhang L, Tang Y, Deisseroth A. Cytotoxic effect of replication-competent adenoviral vectors carrying L-plastin promoter regulated E1A and cytosine deaminase genes in cancers of the breast, ovary and colon. Cancer Gene Ther. 2003;10:388–95.

    Article  CAS  PubMed  Google Scholar 

  109. Lu S, Wang X, Xiao L, Cai L, Zhang Y, Wang H, et al. Gene therapy for ovarian cancer using adenovirus-mediated transfer of cytosine deaminase gene and uracil phosphoribosyltransferase gene directed by MDR1 promoter. Cancer Biol Ther 2007;6:397–404.

    Article  CAS  PubMed  Google Scholar 

  110. Han Z, Hong Z, Gao Q, Chen C, Hao Z, Ji T, et al. A potent oncolytic adenovirus selectively blocks the STAT3 signaling pathway and potentiates cisplatin antitumor activity in ovarian cancer. Hum Gene Ther. 2012;23:32–45.

    Article  CAS  PubMed  Google Scholar 

  111. Wang S, Shu J, Chen L, Chen X, Zhao J, Li S, et al. Synergistic suppression effect on tumor growth of ovarian cancer by combining cisplatin with a manganese superoxide dismutase-armed oncolytic adenovirus. OncoTargets Ther 2016;9:6381–8.

    Article  CAS  Google Scholar 

  112. Sauthoff H, Hu J, Maca C, Goldman M, Heitner S, Yee H, et al. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points. Hum Gene Ther. 2003;14:425–33.

    Article  CAS  PubMed  Google Scholar 

  113. Cho A, Howell VM, Colvin EK. The extracellular matrix in epithelial ovarian cancer - a piece of a puzzle. Front Oncol. 2015;5:245-.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yang SW, Cody JJ, Rivera AA, Waehler R, Wang M, Kimball KJ, et al. Conditionally replicating adenovirus expressing TIMP2 for ovarian cancer therapy. Clin Cancer Res. 2011;17:538–49.

    Article  CAS  PubMed  Google Scholar 

  115. Ashshi AM, El-Shemi AG, Dmitriev IP, Kashentseva EA, Curiel DT. Combinatorial strategies based on CRAd-IL24 and CRAd-ING4 virotherapy with anti-angiogenesis treatment for ovarian cancer. J Ovarian Res. 2016;9:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Salako MA, Kulbe H, Ingemarsdotter CK, Pirlo KJ, Williams SL, Lockley M, et al. Inhibition of the inflammatory cytokine TNF-α increases adenovirus activity in ovarian cancer via modulation of cIAP1/2 expression. Mol Ther: J Am Soc Gene Ther. 2011;19:490–9.

    Article  CAS  Google Scholar 

  117. Browne A, Tookman LA, Ingemarsdotter CK, Bouwman RD, Pirlo K, Wang Y, et al. Pharmacological inhibition of β3 integrin reduces the inflammatory toxicities caused by oncolytic adenovirus without compromising anticancer activity. Cancer Res. 2015;75:2811–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Taipale K, Tähtinen S, Havunen R, Koski A, Liikanen I, Pakarinen P, et al. Interleukin 8 activity influences the efficacy of adenoviral oncolytic immunotherapy in cancer patients. Oncotarget 2018;9:6320–35.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chen J, Zajac AJ, McPherson SA, Hsu HC, Yang P, Wu Q, et al. Primary adenovirus-specific cytotoxic T lymphocyte response occurs after viral clearance and liver enzyme elevation. Gene Ther. 2005;12:1079–88.

    Article  CAS  PubMed  Google Scholar 

  120. Li X, Wang P, Li H, Du X, Liu M, Huang Q, et al. The efficacy of oncolytic adenovirus is mediated by T-cell responses against virus and tumor in Syrian hamster model. Clin Cancer Res. 2017;23:239–49.

    Article  PubMed  CAS  Google Scholar 

  121. Havunen R, Siurala M, Sorsa S, Grönberg-Vähä-Koskela S, Behr M, Tähtinen S, et al. Oncolytic adenoviruses armed with tumor necrosis factor alpha and interleukin-2 enable successful adoptive cell therapy. Mol Ther oncolytics 2017;4:77–86.

    Article  CAS  PubMed  Google Scholar 

  122. Heiniö C, Havunen R, Santos J, de Lint K, Cervera-Carrascon V, Kanerva A, et al. TNFa and IL2 encoding oncolytic Adenovirus activates pathogen and danger-associated immunological signaling. Cells. 2020;9:798.

  123. Cerullo V, Pesonen S, Diaconu I, Escutenaire S, Arstila PT, Ugolini M, et al. Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Res. 2010;70:4297–309.

    Article  CAS  PubMed  Google Scholar 

  124. Ranki T, Pesonen S, Hemminki A, Partanen K, Kairemo K, Alanko T, et al. Phase I study with ONCOS-102 for the treatment of solid tumors - an evaluation of clinical response and exploratory analyses of immune markers. J Immunother Cancer 2016;4:17.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Vassilev L, Ranki T, Joensuu T, Jäger E, Karbach J, Wahle C, et al. Repeated intratumoral administration of ONCOS-102 leads to systemic antitumor CD8(+) T-cell response and robust cellular and transcriptional immune activation at tumor site in a patient with ovarian cancer. Oncoimmunology 2015;4:e1017702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Koski A, Kangasniemi L, Escutenaire S, Pesonen S, Cerullo V, Diaconu I, et al. Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther: J Am Soc Gene Ther 2010;18:1874–84.

    Article  CAS  Google Scholar 

  127. Mahasreshti PJ, Kataram M, Wang MH, Stockard CR, Grizzle WE, Carey D, et al. Intravenous delivery of adenovirus-mediated soluble FLT-1 results in liver toxicity. Clin Cancer Res. 2003;9:2701–10.

    CAS  PubMed  Google Scholar 

  128. Jönsson F, Kreppel F. Barriers to systemic application of virus-based vectors in gene therapy: lessons from adenovirus type 5. Virus Genes. 2017;53:692–9.

    Article  PubMed  CAS  Google Scholar 

  129. Kim S, Kim B, Song YS. Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci. 2016;107:1173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Penet M-F, Krishnamachary B, Wildes FB, Mironchik Y, Hung C-F, Wu TC, et al. Ascites volumes and the ovarian cancer microenvironment. Front Oncol. 2018;8:595-.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kipps E, Tan DS, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer. 2013;13:273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Blackwell JL, Li H, Gomez-Navarro J, Dmitriev I, Krasnykh V, Richter CA, et al. Using a tropism-modified adenoviral vector to circumvent inhibitory factors in ascites fluid. Hum Gene Ther 2000;11:1657–69.

    Article  CAS  PubMed  Google Scholar 

  133. Stallwood Y, Fisher KD, Gallimore PH, Mautner V. Neutralisation of adenovirus infectivity by ascitic fluid from ovarian cancer patients. Gene Ther. 2000;7:637–43.

    Article  CAS  PubMed  Google Scholar 

  134. Hemminki A, Wang M, Desmond RA, Strong TV, Alvarez RD, Curiel DT. Serum and ascites neutralizing antibodies in ovarian cancer patients treated with intraperitoneal adenoviral gene therapy. Hum Gene Ther. 2002;13:1505–14.

    Article  CAS  PubMed  Google Scholar 

  135. Thoma C, Bachy V, Seaton P, Green NK, Greaves DR, Klavinskis L, et al. Adenovirus serotype 11 causes less long-term intraperitoneal inflammation than serotype 5: implications for ovarian cancer therapy. Virology 2013;447:74–83.

    Article  CAS  PubMed  Google Scholar 

  136. Alba R, Bradshaw AC, Coughlan L, Denby L, McDonald RA, Waddington SN, et al. Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors. Blood 2010;116:2656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Atasheva S, Shayakhmetov DM. Adenovirus sensing by the immune system. Curr Opin Virol. 2016;21:109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Allen RJ, Byrnes AP. Interaction of adenovirus with antibodies, complement, and coagulation factors. FEBS Lett. 2019;593:3449–60.

    Article  CAS  PubMed  Google Scholar 

  139. Akiyama M, Thorne S, Kirn D, Roelvink PW, Einfeld DA, King CR, et al. Ablating CAR and integrin binding in adenovirus vectors reduces nontarget organ transduction and permits sustained bloodstream persistence following intraperitoneal administration. Mol Ther. 2004;9:218–30.

    Article  CAS  PubMed  Google Scholar 

  140. Hemminki A, Zinn KR, Liu B, Chaudhuri TR, Desmond RA, Rogers BE, et al. In vivo molecular chemotherapy and noninvasive imaging with an infectivity-enhanced adenovirus. J Natl Cancer Inst. 2002;94:741–9.

    Article  CAS  PubMed  Google Scholar 

  141. Short JJ, Rivera AA, Wu H, Walter MR, Yamamoto M, Mathis JM, et al. Substitution of adenovirus serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor X binding, decreases liver tropism, and improves antitumor efficacy. Mol Cancer Ther. 2010;9:2536–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Barry MA, Rubin JD, Lu SC Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett. 2020;594:1918–46.

  143. Uusi-Kerttula H, Davies JA, Thompson JM, Wongthida P, Evgin L, Shim KG, et al. Ad5(NULL)-A20: a tropism-modified, αvβ6 integrin-selective oncolytic adenovirus for epithelial ovarian cancer therapies. Clin Cancer Res. 2018;24:4215–24.

    Article  PubMed  Google Scholar 

  144. Kuhn I, Bauzon M, Green N, Seymour L, Fisher K, Hermiston T. OvAd1, a novel, potent, and selective chimeric oncolytic virus developed for ovarian cancer by 3D-directed evolution. Mol Ther Oncolytics. 2017;4:55–66.

    Article  CAS  PubMed  Google Scholar 

  145. Sun Y, Lv X, Ding P, Wang L, Sun Y, Li S, et al. Exploring the functions of polymers in adenovirus-mediated gene delivery: Evading immune response and redirecting tropism. Acta Biomaterialia. 2019;97:93–104.

    Article  CAS  PubMed  Google Scholar 

  146. Choi JW, Lee YS, Yun CO, Kim SW. Polymeric oncolytic adenovirus for cancer gene therapy. J Controlled Release. 2015;219:181–91.

    Article  CAS  Google Scholar 

  147. Kim J, Kim PH, Kim SW, Yun CO. Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials. Biomaterials 2012;33:1838–50.

    Article  CAS  PubMed  Google Scholar 

  148. Yang L, Wang L, Su XQ, Wang L, Chen XC, Li D, et al. Suppression of ovarian cancer growth via systemic administration with liposome-encapsulated adenovirus-encoding endostatin. Cancer Gene Ther. 2010;17:49–57.

    Article  PubMed  CAS  Google Scholar 

  149. Yoshihara C, Hamada K, Koyama Y. Preparation of a novel adenovirus formulation with artificial envelope of multilayer polymer-coatings: therapeutic effect on metastatic ovarian cancer. Oncol Rep. 2010;23:733–8.

    CAS  PubMed  Google Scholar 

  150. Lanciotti J, Song A, Doukas J, Sosnowski B, Pierce G, Gregory R, et al. Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol Ther: J Am Soc Gene Ther. 2003;8:99–107.

    Article  CAS  Google Scholar 

  151. Morrison J, Briggs SS, Green N, Fisher K, Subr V, Ulbrich K, et al. Virotherapy of ovarian cancer with polymer-cloaked adenovirus retargeted to the epidermal growth factor receptor. Mol Ther: J Am Soc Gene Ther. 2008;16:244–51.

    Article  CAS  Google Scholar 

  152. Morrison J, Briggs SS, Green NK, Thoma C, Fisher KD, Kehoe S, et al. Cetuximab retargeting of adenovirus via the epidermal growth factor receptor for treatment of intraperitoneal ovarian cancer. Hum Gene Ther. 2009;20:239–51.

    Article  CAS  PubMed  Google Scholar 

  153. Li Z, Fan D, Xiong D. Mesenchymal stem cells as delivery vectors for anti-tumor therapy. Stem Cell Investig. 2015;2:6-.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Reagan MR, Kaplan DL. Concise review: Mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Cells. 2011;29:920–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kuroki LM, Jin X, Dmitriev IP, Kashentseva EA, Powell MA, Mutch DG, et al. Adenovirus platform enhances transduction efficiency of human mesenchymal stem cells: An opportunity for cellular carriers of targeted TRAIL-based TR3 biologics in ovarian cancer. PloS ONE. 2017;12:e0190125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Dembinski JL, Spaeth EL, Fueyo J, Gomez-Manzano C, Studeny M, Andreeff M, et al. Reduction of nontarget infection and systemic toxicity by targeted delivery of conditionally replicating viruses transported in mesenchymal stem cells. Cancer Gene Ther. 2010;17:289–97.

    Article  CAS  PubMed  Google Scholar 

  157. Alfano AL, Nicola Candia A, Cuneo N, Guttlein LN, Soderini A, Rotondaro C, et al. Oncolytic adenovirus-loaded menstrual blood stem cells overcome the blockade of viral activity exerted by ovarian cancer ascites. Mol Ther oncolytics 2017;6:31–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mooney R, Majid AA, Batalla-Covello J, Machado D, Liu X, Gonzaga J, et al. Enhanced delivery of oncolytic adenovirus by neural stem cells for treatment of metastatic ovarian cancer. Mol Ther oncolytics 2019;12:79–92.

    Article  CAS  PubMed  Google Scholar 

  159. Doo DW, Norian LA, Arend RC. Checkpoint inhibitors in ovarian cancer: a review of preclinical data. Gynecologic Oncol Rep. 2019;29:48–54.

    Article  Google Scholar 

  160. Zhu X, Lang J. Programmed death-1 pathway blockade produces a synergistic antitumor effect: combined application in ovarian cancer. J gynecologic Oncol 2017;28:e64.

    Article  CAS  Google Scholar 

  161. Farolfi A, Gurioli G, Fugazzola P, Burgio SL, Casanova C, Ravaglia G, et al. Immune system and DNA repair defects in ovarian cancer: implications for locoregional approaches. Int J Mol Sci. 2019;20:2569.

  162. Rodriguez GM, Galpin KJC, McCloskey CW, Vanderhyden BC The tumor microenvironment of epithelial ovarian cancer and its influence on response to immunotherapy. Cancers. 2018;10:242.

  163. Baci D, Bosi A, Gallazzi M, Rizzi M, Noonan DM, Poggi A, et al. The ovarian cancer tumor immune microenvironment (TIME) as target for therapy: a focus on innate immunity cells as therapeutic effectors. Int J Mol Sci. 2020;21:3125.

  164. Meza-Perez S, Randall TD. Immunological functions of the omentum. Trends Immunol. 2017;38:526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, et al. Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res. 2017;23:587–99.

    Article  CAS  PubMed  Google Scholar 

  166. Ghisoni E, Imbimbo M, Zimmermann S, Valabrega G. Ovarian cancer immunotherapy: turning up the heat. Int J Mol Sci. 2019;20:2927.

    Article  CAS  PubMed Central  Google Scholar 

  167. Borella F, Ghisoni E, Giannone G, Cosma S, Benedetto C, Valabrega G, et al. Immune checkpoint inhibitors in epithelial ovarian cancer: an overview on efficacy and future perspectives. Diagnostics 2020;10:146.

    Article  CAS  PubMed Central  Google Scholar 

  168. Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov. 2019;18:689–706.

    Article  CAS  PubMed  Google Scholar 

  169. Cervera-Carrascon V, Havunen R, Hemminki A. Oncolytic adenoviruses: a game changer approach in the battle between cancer and the immune system. Expert Opin Biol Ther. 2019;19:443–55.

    Article  CAS  PubMed  Google Scholar 

  170. Freedman JD, Hagel J, Scott EM, Psallidas I, Gupta A, Spiers L, et al. Oncolytic adenovirus expressing bispecific antibody targets T-cell cytotoxicity in cancer biopsies. EMBO Mol Med. 2017;9:1067–87.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Freedman JD, Duffy MR, Lei-Rossmann J, Muntzer A, Scott EM, Hagel J, et al. An oncolytic virus expressing a T-cell engager simultaneously targets cancer and immunosuppressive stromal cells. Cancer Res. 2018;78:6852–65.

    Article  CAS  PubMed  Google Scholar 

  172. Abiko K, Matsumura N, Hamanishi J, Horikawa N, Murakami R, Yamaguchi K, et al. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J cancer. 2015;112:1501–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tong B, Wang M. CD47 is a novel potent immunotherapy target in human malignancies: current studies and future promises. Future Oncol. 2018;14:2179–88.

    Article  CAS  PubMed  Google Scholar 

  174. Huang Y, Lv SQ, Liu PY, Ye ZL, Yang H, Li LF, et al. A SIRPα-Fc fusion protein enhances the antitumor effect of oncolytic adenovirus against ovarian cancer. Mol Oncol 2020;14:657–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hoogstad-van Evert JS, Bekkers R, Ottevanger N, Jansen JH, Massuger L, Dolstra H Harnessing natural killer cells for the treatment of ovarian cancer. Gynecol Oncol. 2020;175:P810–6.

  176. Leung EYL, Ennis DP, Kennedy PR, Hansell C, Dowson S, Farquharson M, et al. NK cells augment oncolytic adenovirus cytotoxicity in ovarian cancer. Mol Ther oncolytics 2020;16:289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chen F, Xu Y, Chen Y, Shan S. TIGIT enhances CD4(+) regulatory T-cell response and mediates immune suppression in a murine ovarian cancer model. Cancer Med 2020;9:3584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Li C, Course MM, McNeish IA, Drescher CW, Valdmanis PN, Lieber A. Prophylactic in vivo hematopoietic stem cell gene therapy with an immune checkpoint inhibitor reverses tumor growth in syngeneic mouse tumor models. Cancer Res 2020;80:549–60.

    Article  CAS  PubMed  Google Scholar 

  179. Heise C, Ganly I, Kim Y, Sampson-Johannes A, Brown R, Kirn D. Efficacy of a replication-selective adenovirus against ovarian carcinomatosis is dependent on tumor burden, viral replication and p53 status. Gene Ther. 2000;7:1925–9.

    Article  CAS  PubMed  Google Scholar 

  180. Heise C, Lemmon M, Kirn D. Efficacy with a replication-selective adenovirus plus cisplatin-based chemotherapy: dependence on sequencing but not p53 functional status or route of administration. Clin Cancer Res. 2000;6:4908–14.

    CAS  PubMed  Google Scholar 

  181. Lockley M, Fernandez M, Wang Y, Li NF, Conroy S, Lemoine N, et al. Activity of the adenoviral E1A deletion mutant dl922-947 in ovarian cancer: comparison with E1A wild-type viruses, bioluminescence monitoring, and intraperitoneal delivery in icodextrin. Cancer Res. 2006;66:989–98.

    Article  CAS  PubMed  Google Scholar 

  182. Raki M, Särkioja M, Desmond RA, Chen D-T, Bützow R, Hemminki A, et al. Oncolytic adenovirus Ad5/3-Δ24 and chemotherapy for treatment of orthotopic ovarian cancer. Gynecol Oncol. 2008;108:166–72.

    Article  CAS  PubMed  Google Scholar 

  183. Hemminki A, Belousova N, Zinn KR, Liu B, Wang M, Chaudhuri TR, et al. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. Mol Ther. 2001;4:223–31.

    Article  CAS  PubMed  Google Scholar 

  184. Kim KH, Dmitriev I, O’Malley JP, Wang M, Saddekni S, You Z, et al. A phase I clinical trial of Ad5.SSTR/TK.RGD, a novel infectivity-enhanced bicistronic adenovirus, in patients with recurrent gynecologic cancer. Clin Cancer Res. 2012;18:3440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Vasey PA, Shulman LN, Campos S, Davis J, Gore M, Johnston S, et al. Phase I trial of intraperitoneal injection of the E1B-55-kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J Clin Oncol. 2002;20:1562–9.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Department of Defense Ovarian Cancer Research Program (W81XWH-18-1-0063) and by the NIH (R01CA211096).

Author information

Authors and Affiliations

Authors

Contributions

R.G.-P. did literature research and wrote the paper. P.S.G. and D.T.C. provided supervision.

Corresponding author

Correspondence to David T. Curiel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Pastor, R., Goedegebuure, P.S. & Curiel, D.T. Understanding and addressing barriers to successful adenovirus-based virotherapy for ovarian cancer. Cancer Gene Ther 28, 375–389 (2021). https://doi.org/10.1038/s41417-020-00227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-020-00227-y

This article is cited by

Search

Quick links