Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human umbilical vein endothelial cells-derived microRNA-203-containing extracellular vesicles alleviate non-small-cell lung cancer progression through modulating the DTL/p21 axis

Abstract

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, and is characterized by extensive metastasis and poor prognosis. Extracellular vesicles (EVs) derived from endothelial cells carrying microRNAs (miRNAs/miRs) have diagnostic and therapeutic potential for NSCLC. We herein investigate the potential of EVs derived from human umbilical vein endothelial cells (HUVECs) to transfer miR-203 to affect the progression of NSCLC. miR-203 and p21 were poorly expressed while DTL was highly expressed both in NSCLC tissues and cell lines. We employed CCK-8 proliferation, colony formation, and Transwell migration and invasion assays to evaluate the effects of miR-203 on NSCLC cell behaviors using loss- and gain-function approaches. EVs were isolated from HUVECs and then co-cultured with the A549 cells transfected with mimic-NC or miR-203 inhibitor. miR-203 targeted DTL and downregulated its expression, subsequently leading to increased stability of p21 which is a tumor suppressor. EV-enriched miR-203 from HUVECs suppressed malignant phenotypes of NSCLC cells and delayed tumor growth. In conclusion, miR-203 from HUVEC-derived EVs exerts inhibitory effects on the progression of NSCLC by targeting DTL and promoting p21 protein stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: miR-203 may be involved in the NSCLC development.
Fig. 2: Elevation of miR-203 correlates with better prognosis and inhibits the proliferation of human NSCLC cells.
Fig. 3: Upregulated miR-203 retards NSCLC tumor growth in vivo.
Fig. 4: miR-203 induces stability of p21 protein by targeting DTL.
Fig. 5: miR-203-targeted inhibition of DTL restrains human NSCLC cell proliferation, migration, and invasion.
Fig. 6: HUVEC-derived EVs deliver miR-203 to NSCLC cells.
Fig. 7: HUVEC-derived EVs transferring miR-203 delays A549 cell proliferation, migration, and invasion.
Fig. 8: miR-203 delivered from HUVEC-derived EVs prevents tumor growth in vivo.
Fig. 9: The figure abstract implicating the molecular mechanism by which HUVEC-derived EV regulates the pathogenesis of NSCLC.

Similar content being viewed by others

References

  1. Zhou C. Lung cancer molecular epidemiology in China: recent trends. Transl Lung Cancer Res. 2014;3:270–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Boeckx B, Shahi RB, Smeets D, De Brakeleer S, Decoster L, Van Brussel T et al. The genomic landscape of nonsmall cell lung carcinoma in never smokers. Int J Cancer. 2019;146:3207-18.

  3. Li W, Yu H. Separating or combining immune checkpoint inhibitors (ICIs) and radiotherapy in the treatment of NSCLC brain metastases. J Cancer Res Clin Oncol. 2020;146:137–52.

    Article  Google Scholar 

  4. Rebuzzi SE, Alfieri R, La Monica S, Minari R, Petronini PG, Tiseo M. Combination of EGFR-TKIs and chemotherapy in advanced EGFR mutated NSCLC: review of the literature and future perspectives. Crit Rev Oncol Hematol. 2020;146:102820.

    Article  Google Scholar 

  5. Uramoto H, Tanaka F. Recurrence after surgery in patients with NSCLC. Transl Lung Cancer Res. 2014;3:242–9.

    PubMed  PubMed Central  Google Scholar 

  6. Oettel A, Lorenz M, Stangl V, Costa SD, Zenclussen AC, Schumacher A. Human umbilical vein endothelial cells foster conversion of CD4+CD25-Foxp3- T cells into CD4+Foxp3+ regulatory T cells via transforming growth factor-beta. Sci Rep. 2016;6:23278.

    Article  CAS  Google Scholar 

  7. Mu X, Fang C, Zhou J, Xi Y, Zhang L, Wei Y, et al. Fusion with human lung cancer cells elongates the life span of human umbilical endothelial cells and enhances the anti-tumor immunity. J Cancer Res Clin Oncol. 2016;142:111–23.

    Article  CAS  Google Scholar 

  8. Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. 2015;205:35–44.

    Article  CAS  Google Scholar 

  9. Yue KY, Zhang PR, Zheng MH, Cao XL, Cao Y, Zhang YZ, et al. Neurons can upregulate Cav-1 to increase intake of endothelial cells-derived extracellular vesicles that attenuate apoptosis via miR-1290. Cell Death Dis. 2019;10:869.

    Article  CAS  Google Scholar 

  10. Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, et al. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics. 2019;9:8001–17.

    Article  CAS  Google Scholar 

  11. Couto N, Caja S, Maia J, Strano Moraes MC, Costa-Silva B. Exosomes as emerging players in cancer biology. Biochimie. 2018;155:2–10.

    Article  CAS  Google Scholar 

  12. Zhou S, Hu T, Zhang F, Tang D, Li D, Cao J, et al. Integrated microfluidic device for accurate extracellular vesicle quantification and protein markers analysis directly from human whole blood. Anal Chem. 2020;92:1574–81.

    Article  CAS  Google Scholar 

  13. Wang Y, Xu YM, Zou YQ, Lin J, Huang B, Liu J, et al. Identification of differential expressed PE exosomal miRNA in lung adenocarcinoma, tuberculosis, and other benign lesions. Medicine (Baltim). 2017;96:e8361.

    Article  CAS  Google Scholar 

  14. Shen M, Dong C, Ruan X, Yan W, Cao M, Pizzo D, et al. Chemotherapy-induced extracellular vesicle miRNAs promote breast cancer stemness by targeting ONECUT2. Cancer Res. 2019;79:3608–21.

    Article  CAS  Google Scholar 

  15. Takano Y, Masuda T, Iinuma H, Yamaguchi R, Sato K, Tobo T, et al. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget. 2017;8:78598–613.

    Article  Google Scholar 

  16. Zhou Y, Liang H, Liao Z, Wang Y, Hu X, Chen X, et al. miR-203 enhances let-7 biogenesis by targeting LIN28B to suppress tumor growth in lung cancer. Sci Rep. 2017;7:42680.

    Article  CAS  Google Scholar 

  17. Xu YW, Cao LR, Wang M, Xu Y, Wu X, Liu J, et al. Maternal DCAF2 is crucial for maintenance of genome stability during the first cell cycle in mice. J Cell Sci. 2017;130:3297–307.

    CAS  PubMed  Google Scholar 

  18. Perez-Pena J, Corrales-Sanchez V, Amir E, Pandiella A, Ocana A. Ubiquitin-conjugating enzyme E2T (UBE2T) and denticleless protein homolog (DTL) are linked to poor outcome in breast and lung cancers. Sci Rep. 2017;7:17530.

    Article  Google Scholar 

  19. Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev. 2008;22:2496–506.

    Article  CAS  Google Scholar 

  20. Vigneron A, Cherier J, Barre B, Gamelin E, Coqueret O. The cell cycle inhibitor p21waf1 binds to the myc and cdc25A promoters upon DNA damage and induces transcriptional repression. J Biol Chem. 2006;281:34742–50.

    Article  CAS  Google Scholar 

  21. Olivero M, Dettori D, Arena S, Zecchin D, Lantelme E, Di Renzo MF. The stress phenotype makes cancer cells addicted to CDT2, a substrate receptor of the CRL4 ubiquitin ligase. Oncotarget. 2014;5:5992–6002.

    Article  Google Scholar 

  22. Liu JQ, Feng YH, Zeng S, Zhong MZ. linc01088 promotes cell proliferation by scaffolding EZH2 and repressing p21 in human non-small cell lung cancer. Life Sci. 2020;241:117134.

    Article  CAS  Google Scholar 

  23. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–60.

    Article  CAS  Google Scholar 

  24. Wang S, Wu Y, Hou Y, Guan X, Castelvetere MP, Oblak JJ, et al. CXCR2 macromolecular complex in pancreatic cancer: a potential therapeutic target in tumor growth. Transl Oncol. 2013;6:216–25.

    Article  Google Scholar 

  25. Grimolizzi F, Monaco F, Leoni F, Bracci M, Staffolani S, Bersaglieri C, et al. Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression. Sci Rep. 2017;7:15277.

    Article  Google Scholar 

  26. Hu H, Wang B, Jiang C, Li R, Zhao J. Endothelial progenitor cell-derived exosomes facilitate vascular endothelial cell repair through shuttling miR-21-5p to modulate Thrombospondin-1 expression. Clin Sci (Lond). 2019;133:1629–44.

    Article  CAS  Google Scholar 

  27. Karuppasamy R, Veerappapillai S, Maiti S, Shin WH, Kihara D. Current progress and future perspectives of polypharmacology: from the view of non-small cell lung cancer. Semin Cancer Biol. 2019;S1044-579X:30148–8.

  28. Lin J, Wang Y, Zou YQ, Chen X, Huang B, Liu J, et al. Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumour Biol. 2017;37:15835–45.

  29. Tang R, Zhong T, Dang Y, Zhang X, Li P, Chen G. Association between downexpression of MiR-203 and poor prognosis in non-small cell lung cancer patients. Clin Transl Oncol. 2016;18:360–8.

    Article  CAS  Google Scholar 

  30. Hu H, Xu Z, Li C, Xu C, Lei Z, Zhang HT, et al. MiR-145 and miR-203 represses TGF-beta-induced epithelial-mesenchymal transition and invasion by inhibiting SMAD3 in non-small cell lung cancer cells. Lung Cancer. 2016;97:87–94.

    Article  Google Scholar 

  31. Chi Y, Jin Q, Liu X, Xu L, He X, Shen Y, et al. miR-203 inhibits cell proliferation, invasion, and migration of non-small-cell lung cancer by downregulating RGS17. Cancer Sci. 2017;108:2366–72.

    Article  CAS  Google Scholar 

  32. Chan SH, Wang LH. Regulation of cancer metastasis by microRNAs. J Biomed Sci. 2015;22:9.

    Article  CAS  Google Scholar 

  33. Xue YB, Ding MQ, Xue L, Luo JH. CircAGFG1 sponges miR-203 to promote EMT and metastasis of non-small-cell lung cancer by upregulating ZNF281 expression. Thorac Cancer. 2019;10:1692–701.

    Article  CAS  Google Scholar 

  34. Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016;42:63–71.

    Article  CAS  Google Scholar 

  35. Nie FQ, Sun M, Yang JS, Xie M, Xu TP, Xia R, et al. Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther. 2015;14:268–77.

    Article  CAS  Google Scholar 

  36. Zhao S, Han J, Zheng L, Yang Z, Zhao L, Lv Y. MicroRNA-203 regulates growth and metastasis of breast cancer. Cell Physiol Biochem. 2015;37:35–42.

    Article  Google Scholar 

  37. Clere N, Renault S, Corre I. Endothelial-to-mesenchymal transition in cancer. Front Cell Dev Biol. 2020;8:747.

  38. Sobierajska K, Ciszewski W, Sacewicz-Hofman I, Niewiarowska J. Endothelial cells in the tumor microenvironment. Adv Exp Med Biol. 2020;1234:71–86.

    Article  CAS  Google Scholar 

  39. Shenoy A, Lu J. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier. Cancer Lett. 2016; 380:534-44.

  40. Nagl L, Horvath L, Pircher A, Wolf D. Tumor endothelial cells (TECs) as potential immune directors of the tumor microenvironment—new findings and future Perspectives. Front Cell Dev Biol. 2020;8:766

    Article  Google Scholar 

  41. Sayed H, Hetta H, Shafik E, Zahran A. Flow cytometric analysis of circulating endothelial cells and endothelial progenitor cells in pediatric solid tumors: prognostic impact on treatment response and survival. Cancer Immunol Immunother. 2020. https://doi.org/10.1007/s00262-020-02719-0, https://pubmed.ncbi.nlm.nih.gov/32945943/.

  42. Bell E, Taylor MA. Functional roles for exosomal microRNAs in the tumour microenvironment. Comput Struct Biotechnol J. 2017;15:8–13.

    Article  CAS  Google Scholar 

  43. Yang Q, Diamond MP, Al-Hendy A. The emerging role of extracellular vesicle-derived miRNAs: implication in cancer progression and stem cell related diseases. J Clin Epigenet. 2016;2:13.

  44. Poroyko V, Mirzapoiazova T, Nam A, Mambetsariev I, Mambetsariev B, Wu X, et al. Exosomal miRNAs species in the blood of small cell and non-small cell lung cancer patients. Oncotarget 2018;9:19793–806.

    Article  Google Scholar 

  45. Liu W, Liu J, Zhang Q, Wei L. Downregulation of serum exosomal miR-216b predicts unfavorable prognosis in patients with non-small cell lung cancer. Cancer Biomark 2020;27:113–20.

    Article  CAS  Google Scholar 

  46. Li J, Yu J, Zhang H, Wang B, Guo H, Bai J, et al. Exosomes-derived MiR-302b suppresses lung cancer cell proliferation and migration via TGFbetaRII inhibition. Cell Physiol Biochem. 2016;38:1715–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the helpful comments on this paper received from the reviewers.

Author information

Authors and Affiliations

Authors

Contributions

Tiangang Ma wrote the paper and conceived and designed the experiments; Yanbing Hu analyzed the data; Yinxue Guo and Qinghua Zhang collected and provided the sample for this study. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Qinghua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Hu, Y., Guo, Y. et al. Human umbilical vein endothelial cells-derived microRNA-203-containing extracellular vesicles alleviate non-small-cell lung cancer progression through modulating the DTL/p21 axis. Cancer Gene Ther 29, 87–100 (2022). https://doi.org/10.1038/s41417-020-00292-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-020-00292-3

This article is cited by

Search

Quick links