Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of circRNAs in the progression of colorectal cancer: novel strategies for detection and therapy

Abstract

Endogenous noncoding RNAs with a covalently closed loop are known as circular RNAs (circRNAs). Recently, published works have revealed that circRNAs, which act as microRNA sponges, are critical for the biological behavior of several kinds of malignancies, including tumor cell proliferation, apoptosis, invasion, and metastasis. Additionally, there is a significant correlation between circRNAs and tumor resistance, stage, prognosis, and size. At present, colorectal cancer (CRC) is one of the most serious malignant tumors for human health. CircRNAs could represent potential targets to use in the prevention, diagnosis, and therapy of CRC, according to many studies. To fully comprehend the role of circRNAs in the incidence and progression of CRC, this review outlines the regulatory role and mechanisms of circRNAs in CRC and assesses their potential relevance as diagnostic and treatment possibilities for CRC. Our goal is to offer meaningful biological information for clinical evaluation and decision-making process for CRC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CircRNA formation and interaction. Splicing of pre-mRNA and removal of introns eventually results in the formation of linear RNA.
Fig. 2: The role of circRNAs in regulating cellular processes.

Similar content being viewed by others

References

  1. Lee R, Holmes D. Barriers and recommendations for colorectal cancer screening in Africa. Glob Health Action. 2023;16:2181920.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pecere S, Ciuffini C, Chiappetta MF, Petruzziello L, Papparella LG, Spada C, et al. Increasing the accuracy of colorectal cancer screening. Expert Rev Anticancer Ther. 2023;23:583–91.

    Article  CAS  PubMed  Google Scholar 

  3. Pilleron S, Maringe C, Morris EJA, Leyrat C. Immortal-time bias in older vs younger age groups: a simulation study with application to a population-based cohort of patients with colon cancer. Br J Cancer. 2023;128:1521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023;73:233–54.

    Article  PubMed  Google Scholar 

  5. Jirka GW, Lefler DS, Russo J, Bashir B. Colon adenocarcinoma and Birt-Hogg-Dubé syndrome in a young patient: case report and exploration of pathologic implications. Cancer Biol Ther. 2023;24:2184153.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ali O, Gupta S, Brain K, Lifford KJ, Paranjothy S, Dolwani S. Acceptability of alternative technologies compared with faecal immunochemical test and/or colonoscopy in colorectal cancer screening: a systematic review. J Med Screen. 2023;30:14–27.

    Article  PubMed  Google Scholar 

  7. Ahmed AM, Bacchus MW, Beal SG, Huber KN, Lee JH, Zhao J, et al. Colorectal cancer screening completion by patients due or overdue for screening after reminders: a retrospective study. BMC Cancer. 2023;23:391.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chao HM, Wang TW, Chern E, Hsu SH. Regulatory RNAs, microRNA, long-non coding RNA and circular RNA roles in colorectal cancer stem cells. World J Gastrointest Oncol. 2022;14:748–64.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jain N, Gupta P, Sahoo S, Mallick B. Non-coding RNAs and their cross-talks impacting reproductive health of women. Wiley Interdiscip Rev RNA. 2022;13:e1695.

    Article  CAS  PubMed  Google Scholar 

  10. Chaichian S, Shafabakhsh R, Mirhashemi SM, Moazzami B, Asemi Z. Circular RNAs: a novel biomarker for cervical cancer. J Cell Physiol. 2020;235:718–24.

    Article  CAS  PubMed  Google Scholar 

  11. Liu X, Tong Y, Huang Q, He Y, Shang H, Chen Z, et al. CircRPPH1 accelerates the proliferation and migration of bladder cancer via enhancing the STAT3 signaling pathway. Oncol Rep. 2023;49:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu D, Li Y, Xu A, Tang W, Yu B. CircRNA RNA hsa_circ_0008234 promotes colon cancer progression by regulating the miR-338-3p/ETS1 Axis and PI3K/AKT/mTOR signaling. Cancers (Basel). 2023;15:2068.

    Article  CAS  PubMed  Google Scholar 

  13. Xiong Y, Li L, Wang N, Wang F, Chen Z, Han L, et al. Circ_0001387 regulates SKA2 to accelerate breast cancer progression through miR-136-5p. Thorac Cancer. 2023;14:1707–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang Q, Wang X, Zhou Q, Li Q, Yang X, Xu M, et al. Fuzheng Kang-Ai inhibits NSCLC cell proliferation via regulating hsa_circ_0048091/hsa-miR-378g/ARRDC3 pathway. Phytomedicine. 2023;114:154819.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang P, Zuo Z, Shang W, Wu A, Bi R, Wu J, et al. Identification of differentially expressed circular RNAs in human colorectal cancer. Tumour Biol. 2017;39:1010428317694546.

    PubMed  Google Scholar 

  16. Wen J, Liu J, Wan L, Wang F. Long noncoding RNA/circular RNA regulates competitive endogenous RNA networks in rheumatoid arthritis: molecular mechanisms and traditional Chinese medicine therapeutic significances. Ann Med. 2023;55:973–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pekarek L, Torres-Carranza D, Fraile-Martinez O, García-Montero C, Pekarek T, Saez MA, et al. An overview of the role of MicroRNAs on carcinogenesis: a focus on cell cycle, angiogenesis and metastasis. Int J Mol Sci. 2023;24:7268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schreiner S, Didio A, Hung LH, Bindereif A. Design and application of circular RNAs with protein-sponge function. Nucleic Acids Res. 2020;48:12326–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, et al. Colon cancer transcriptome. Prog Biophys Mol Biol. 2023;180-181:49–82.

    Article  CAS  PubMed  Google Scholar 

  20. van den Berg I, Smid M, Coebergh van den Braak RRJ, van Deurzen CHM, de Weerd V, Foekens JA, et al. Circular RNA in chemonaive lymph node negative colon cancer patients. Cancers (Basel). 2021;13:1903.

    Article  PubMed  Google Scholar 

  21. Li X, Wang J, Lin W, Yuan Q, Lu Y, Wang H, et al. circEXOC6B interacting with RRAGB, an mTORC1 activator, inhibits the progression of colorectal cancer by antagonizing the HIF1A-RRAGB-mTORC1 positive feedback loop. Mol Cancer. 2022;21:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Jiang C, Liu Q, Huang R, Wang M, Guo X. CircRNAs: emerging factors for regulating glucose metabolism in colorectal cancer. Clin Transl Oncol. 2023;25:2321–31.

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Ma H. circRNA PLOD2 promotes tumorigenesis and Warburg effect in colon cancer by the miR-513a-5p/SIX1/LDHA axis. Cell Cycle. 2022;21:2484–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Zhou L, Chen B, Yu Z, Zhang J, Zhang Z, et al. Circular RNA circCSPP1 promotes the occurrence and development of colon cancer by sponging miR-431 and regulating ROCK1 and ZEB1. J Transl Med. 2022;20:58.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mo Y, Lu Q, Zhang Q, Chen J, Deng Y, Zhang K, et al. Circular RNA CCDC66 improves murine double minute 4 (MDM4) expression through targeting miR-370 in colorectal cancer. Comput Math Methods Med. 2022;2022:7723995.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Luo Y, Yao Q. Circ_0085315 promotes cell proliferation, invasion, and migration in colon cancer through miR-1200/MAP3K1 signaling pathway. Cell Cycle. 2022;21:1194–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gu H, Xu Z, Zhang J, Wei Y, Cheng L, Wang J. circ_0038718 promotes colon cancer cell malignant progression via the miR-195-5p/Axin2 signaling axis and also effect Wnt/β-catenin signal pathway. BMC Genomics. 2021;22:768.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wei Z, Tian Z, Zhang L. CircPPP1R12A promotes the progression of colon cancer through regulating CTNNB1 via sponging miR-375. Anticancer Drugs. 2021;32:635–46.

    Article  CAS  PubMed  Google Scholar 

  29. Li Q, Li K, Guo Q, Yang T. CircRNA circSTIL inhibits ferroptosis in colorectal cancer via miR-431/SLC7A11 axis. Environ Toxicol. 2023;38:981–9.

    Article  CAS  PubMed  Google Scholar 

  30. Wei J, Lin Y, Wang Z, Liu Y, Guo W. Circ_0006174 accelerates colorectal cancer progression through regulating miR-138-5p/MACC1 axis. Cancer Manag Res. 2021;13:1673–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai X, Yang H, Pan Y, Wen Y, Huang C, Li R. Circ_0060967 contributes to colorectal cancer progression by sponging miR-1184 to up-regulate SRC proto-oncogene. Arab J Gastroenterol. 2023;24:117–28.

    Article  PubMed  Google Scholar 

  32. Li C, Zhou H. Circular RNA hsa_circRNA_102209 promotes the growth and metastasis of colorectal cancer through miR-761-mediated Ras and Rab interactor 1 signaling. Cancer Med. 2020;9:6710–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang F, Su T, Xiao M. RUNX3-regulated circRNA METTL3 inhibits colorectal cancer proliferation and metastasis via miR-107/PER3 axis. Cell Death Dis. 2022;13:550.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen P, Yao Y, Yang N, Gong L, Kong Y, Wu A. Circular RNA circCTNNA1 promotes colorectal cancer progression by sponging miR-149-5p and regulating FOXM1 expression. Cell Death Dis. 2020;11:557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu L, Zhang F, Wang Y. Circ_0005615 regulates the progression of colorectal cancer through the miR-873-5p/FOSL2 signaling pathway. Biochem Genet. 2023;61:2020–41.

    Article  CAS  PubMed  Google Scholar 

  36. Wu R, Tang S, Wang Q, Kong P, Liu F. Hsa_circ_0003602 contributes to the progression of colorectal cancer by mediating the miR-149-5p/SLC38A1 axis. Gut Liver. 2023;17:267–79.

    Article  CAS  PubMed  Google Scholar 

  37. Huang L, Dou G, Lu J, Chen Z, Wang J. Has_circ_0071803 promotes colorectal cancer progression by regulating miR-330-5p/MAPK signaling pathway. Histol Histopathol. 2023;38:1443–51.

    CAS  PubMed  Google Scholar 

  38. Yang FS, Gong SX, Qiu DD. Circ-MALAT1 accelerates cell proliferation and epithelial mesenchymal transformation of colorectal cancer through regulating miR-506-3p/KAT6B axis. Kaohsiung J Med Sci. 2023;39:862–72.

    Article  CAS  PubMed  Google Scholar 

  39. Yang H, Li X, Meng Q, Sun H, Wu S, Hu W, et al. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer. 2020;19:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tan P, Sun H, Xu M, Liu X, Qin J, Nie J, et al. Circular RNA circ0104103 inhibits colorectal cancer progression through interactions with HuR and miR-373-5p. Cancer Sci. 2023;114:1396–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang S, Gao S, Liu T, Liu J, Zheng X, Li Z. Circular RNA SMARCA5 functions as an anti-tumor candidate in colon cancer by sponging microRNA-552. Cell Cycle. 2021;20:689–701.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tu FL, Guo XQ, Wu HX, He ZY, Wang F, Sun AJ, et al. Circ-0001313/miRNA-510-5p/AKT2 axis promotes the development and progression of colon cancer. Am J Transl Res. 2020;12:281–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Chen H, Wei X. Circ_0007142 downregulates miR-874-3p-mediated GDPD5 on colorectal cancer cells. Eur J Clin Invest. 2021;51:e13541.

    Article  CAS  PubMed  Google Scholar 

  44. Guo Y, Guo Y, Chen C, Fan D, Wu X, Zhao L, et al. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis. Mol Cancer. 2021;20:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao S, Xu F, Ji Y, Wang Y, Wei M, Zhang L. Circular RNA circ-CD44 regulates chemotherapy resistance by targeting the miR-330-5p/ABCC1 axis in colorectal cancer cells. Histol Histopathol. 2023;38:209–21.

    CAS  PubMed  Google Scholar 

  46. Sun Y, Cao Z, Shan J, Gao Y, Liu X, Ma D, et al. Hsa_circ_0020095 promotes oncogenesis and cisplatin resistance in colon cancer by sponging miR-487a-3p and modulating SOX9. Front Cell Dev Biol. 2021;8:604869.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang J, Ke S, Gong Y, Cai Y, Xia L, Shi Z, et al. Circ_0011385 knockdown inhibits cell proliferation, migration and invasion, whereas promotes cell apoptosis by regulating miR-330-3p/MYO6 axis in colorectal cancer. Biomed J. 2023;46:110–21.

    Article  CAS  PubMed  Google Scholar 

  48. Xu YJ, Zhao JM, Gao C, Ni XF, Wang W, Hu WW, et al. Hsa_circ_0136666 activates Treg-mediated immune escape of colorectal cancer via miR-497/PD-L1 pathway. Cell Signal. 2021;86:110095.

    Article  CAS  PubMed  Google Scholar 

  49. Huang G, Ma J, Zhang L. Integrin Subunit Alpha 5 (ITGA5) gene circular RNA sponges microRNA-107 in colorectal carcinoma cells and tissues and regulates the expression of the forkhead box J3 (FOXJ3) gene. Med Sci Monit. 2020;26:e920623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang L, Song W, Shi J, Chen Y. Circ_0084188 regulates the progression of colorectal cancer through the miR-769-5p/KIF20A axis. Biochem Genet. 2023;61:1727–44.

    Article  CAS  PubMed  Google Scholar 

  51. Abu N, Hon KW, Jeyaraman S, Yahaya A, Abdullah NM, Mustangin M, et al. Identification of differentially expressed circular RNAs in chemoresistant colorectal cancer. Epigenomics. 2019;11:875–84.

    Article  CAS  PubMed  Google Scholar 

  52. Lai M, Liu G, Li R, Bai H, Zhao J, Xiao P, et al. Hsa_circ_0079662 induces the resistance mechanism of the chemotherapy drug oxaliplatin through the TNF-α pathway in human colon cancer. J Cell Mol Med. 2020;24:5021–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lv Q, Xia Q, Li A, Wang Z. circRNA_101277 influences cisplatin resistance of colorectal cancer cells by modulating the miR-370/IL-6 axis. Genet Res (Camb). 2022;2022:4237327.

    Article  PubMed  Google Scholar 

  54. Chen H, Pei L, Xie P, Guo G. Circ-PRKDC contributes to 5-fluorouracil resistance of colorectal cancer cells by regulating miR-375/FOXM1 axis and wnt/β-catenin pathway. Onco Targets Ther. 2020;13:5939–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He X, Ma J, Zhang M, Cui J, Yang H. Circ_0007031 enhances tumor progression and promotes 5-fluorouracil resistance in colorectal cancer through regulating miR-133b/ABCC5 axis. Cancer Biomark. 2020;29:531–42.

    Article  CAS  PubMed  Google Scholar 

  56. Tan Y, Wang K, Kong Y. Circular RNA ZFR promotes cell cycle arrest and apoptosis of colorectal cancer cells via the miR-147a/CACUL1 axis. J Gastrointest Oncol. 2022;13:1793–804.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Su S, Lu W, Liu J, Li L, Liu L, Li X, et al. Circ_0007031 silencing inhibits cell proliferation and induces cell apoptosis via downregulating MELK at a miR-485-3p-dependent way in colorectal cancer. Biochem Genet. 2022;60:576–97.

    Article  CAS  PubMed  Google Scholar 

  58. Wang L, Wu H, Chu F, Zhang L, Xiao X. Knockdown of circ_0000512 inhibits cell proliferation and promotes apoptosis in colorectal cancer by regulating miR-296-5p/RUNX1 axis. Onco Targets Ther. 2020;13:7357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li M, Zhi Z, Jiang X, Duan GC, Zhu WN, Pang Z, et al. METTL9 derived circular RNA circ-METTL9 sponges miR-551b-5p to accelerate colorectal cancer progression by upregulating CDK6. Carcinogenesis. 2023;44:463–75.

    Article  CAS  PubMed  Google Scholar 

  60. Zhen Y, Sun G, Chen C, Li J, Xiao R, Xu Z. Circular RNA hsa_circ_0064559 affects tumor cell growth and progression of colorectal cancer. World J Surg Oncol. 2023;21:171.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lu Y, Wang XM, Li ZS, Wu AJ, Cheng WX. Hsa_circ_0001658 accelerates the progression of colorectal cancer through miR-590-5p/METTL3 regulatory axis. World J Gastrointest Oncol. 2023;15:76–89.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Andrabi MQ, Kesavan Y, Ramalingam S. Non-coding RNA as biomarkers for survival in colorectal cancer patients. Curr Aging Sci. Published online February 2, 2023.

  63. He F, Liu Q, Liu H, Pei Q, Zhu H. Circular RNA ACACA negatively regulated p53-modulated mevalonate pathway to promote colorectal tumorigenesis via regulating miR-193a/b-3p/HDAC3 axis. Mol Carcinog. 2023;62:754–70.

    Article  CAS  PubMed  Google Scholar 

  64. Fang Q, Ni C, Cai Z, Li W, Xie J. Prognostic significance of hsa_circ_0048122 to predict liver metastasis in early-stage colorectal cancer. J Clin Lab Anal. 2022;36:e24577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang Q, Zheng Y, Liu J, Tang X, Wang Y, Li X, et al. CircIFNGR2 enhances proliferation and migration of CRC and induces cetuximab resistance by indirectly targeting KRAS via sponging to MiR-30b. Cell Death Dis. 2023;14:24.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yang Y, Luo D, Shao Y, Shan Z, Liu Q, Weng J, et al. circCAPRIN1 interacts with STAT2 to promote tumor progression and lipid synthesis via upregulating ACC1 expression in colorectal cancer. Cancer Commun (Lond). 2023;43:100–22.

    Article  PubMed  Google Scholar 

  67. Duan H, Qiu J. Association of has_circ_0001944 upregulations with prognosis and cancer progression in patients with colorectal cancer. Discov Oncol. 2022;13:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xiao YS, Tong HZ, Yuan XH, Xiong CH, Xu XY, Zeng YF. CircFADS2: A potential prognostic biomarker of colorectal cancer. Exp Biol Med (Maywood). 2020;245:1233–41.

    Article  CAS  PubMed  Google Scholar 

  69. Liu Z, Zheng N, Li J, Li C, Zheng D, Jiang X, et al. N6-methyladenosine-modified circular RNA QSOX1 promotes colorectal cancer resistance to anti-CTLA-4 therapy through induction of intratumoral regulatory T cells. Drug Resist Updat. 2022;65:100886.

    Article  CAS  PubMed  Google Scholar 

  70. Yao B, Zhang Q, Yang Z, An F, Nie H, Wang H, et al. CircEZH2/miR-133b/IGF2BP2 aggravates colorectal cancer progression via enhancing the stability of m6A-modified CREB1 mRNA. Mol Cancer. 2022;21:140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhi Q, Wan D, Ren R, Xu Z, Guo X, Han Y, et al. Circular RNA profiling identifies circ102049 as a key regulator of colorectal liver metastasis. Mol Oncol. 2021;15:623–41.

    Article  CAS  PubMed  Google Scholar 

  72. Chen Z, He L, Zhao L, Zhang G, Wang Z, Zhu P, et al. circREEP3 drives colorectal cancer progression via activation of FKBP10 transcription and restriction of antitumor immunity. Adv Sci (Weinh). 2022;9:e2105160.

    Article  PubMed  Google Scholar 

  73. Zhang Z, Fan W, Gao Q, Han Y, Ma J, Gao W, et al. Hsa_Circ_0000826 inhibits the proliferation of colorectal cancer by targeting AUF1. J Genet Genomics. 2023;50:192–203.

    Article  PubMed  Google Scholar 

  74. Gao Y, Zhou Y, Wei L, Feng Z, Chen Y, Liu P, et al. Hsa_Circ_0066351 acts as a prognostic and immunotherapeutic biomarker in colorectal cancer. Front Immunol. 2022;13:927811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jin YD, Ren YR, Gao YX, Zhang L, Ding Z. Hsa_circ_0005075 predicts a poor prognosis and acts as an oncogene in colorectal cancer via activating Wnt/β-catenin pathway. Eur Rev Med Pharm Sci. 2019;23:3311–9.

    Google Scholar 

  76. Li T, Zhou T, Wu J, Lv H, Zhou H, Du M, et al. Plasma exosome-derived circGAPVD1 as a potential diagnostic marker for colorectal cancer. Transl Oncol. 2023;31:101652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. He B, Chao W, Huang Z, Zeng J, Yang J, Luo D, et al. Hsa_circ_001659 serves as a novel diagnostic and prognostic biomarker for colorectal cancer. Biochem Biophys Res Commun. 2021;551:100–6.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang L, Dong X, Yan B, Yu W, Shan L. CircAGFG1 drives metastasis and stemness in colorectal cancer by modulating YY1/CTNNB1. Cell Death Dis. 2020;11:542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhan W, Liao X, Wang Y, Li L, Li J, Chen Z, et al. circCTIC1 promotes the self-renewal of colon TICs through BPTF-dependent c-Myc expression. Carcinogenesis. 2019;40:560–8.

    Article  CAS  PubMed  Google Scholar 

  80. Rengganaten V, Huang CJ, Tsai PH, Wang ML, Yang YP, Lan YT, et al. Mapping a circular RNA-microRNA-mRNA-signaling regulatory axis that modulates stemness properties of cancer stem cell populations in colorectal cancer spheroid cells. Int J Mol Sci. 2020;21:7864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zeng W, Zhu JF, Guo J, Huang GJ, Ai LS, Zeng Y, et al. m6A-modified circFNDC3B inhibits colorectal cancer stemness and metastasis via RNF41-dependent ASB6 degradation. Cell Death Dis. 2022;13:1008.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang X, Yao J, Shi H, Gao B, Zhou H, Zhang Y, et al. Hsa_circ_0026628 promotes the development of colorectal cancer by targeting SP1 to activate the Wnt/β-catenin pathway. Cell Death Dis. 2021;12:802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guo X, Chang X, Wang Z, Jiang C, Wei Z. CircRNAs: promising factors for regulating angiogenesis in colorectal cancer. Clin Transl Oncol. 2022;24:1673–81.

    Article  CAS  PubMed  Google Scholar 

  84. Chen LY, Wang L, Ren YX, Pang Z, Liu Y, Sun XD, et al. The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α translation. Mol Cancer. 2020;19:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jin L, Han C, Zhai T, Zhang X, Chen C, Lian L. Circ_0030998 promotes tumor proliferation and angiogenesis by sponging miR-567 to regulate VEGFA in colorectal cancer. Cell Death Discov. 2021;7:160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lin Z, Lin J. Circ_0004585 facilitates tumorigenesis of colorectal cancer via modulating the miR-338-3p/ZFX axis and activating the MEK/ERK pathway. Cell Mol Bioeng. 2023;16:159–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mao Z, Lin D, Xu J. Hsa_circ_0001535 regulates colorectal cancer progression via the miR-433-3p/RBPJ axis. Biochem Genet. 2023;61:861–78.

    Article  CAS  PubMed  Google Scholar 

  88. Li YF, Pei FL, Cao MZ. CircRNA_101951 promotes migration and invasion of colorectal cancer cells by regulating the KIF3A-mediated EMT pathway. Exp Ther Med. 2020;19:3355–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang T, Sun J, Wang W, Li D, Yang X, Jia A, et al. Hsa_circ_0006732 regulates colorectal cancer cell proliferation, invasion and EMT by miR-127-5p/RAB3D axis. Mol Cell Biochem. 2022;477:2751–60.

    Article  CAS  PubMed  Google Scholar 

  90. Wang Q, Shi L, Shi K, Wang Q, Shi L, Shi K, et al. CircCSPP1 functions as a ceRNA to promote colorectal carcinoma cell EMT and liver metastasis by upregulating COL1A1. Front Oncol. 2020;10:850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen H, Zhang J, Yang L, Li Y, Wang Z, Ye C. circ-ZEB1 regulates epithelial-mesenchymal transition and chemotherapy resistance of colorectal cancer through acting on miR-200c-5p. Transl Oncol. 2023;28:101604.

    Article  CAS  PubMed  Google Scholar 

  92. Mohammadi D, Zafari Y, Estaki Z, Mehrabi M, Moghbelinejad S. Evaluation of plasma circ_0006282 as a novel diagnostic biomarker in colorectal cancer. J Clin Lab Anal. 2022;36:e24147.

    Article  CAS  PubMed  Google Scholar 

  93. Zheng E, Xiao D. Exploration into plasma Hsa_circ_0052184 as a new biomarker of colorectal cancer prognosis. Pharmgenomics Pers Med. 2023;16:589–97.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Liaoning Key Laboratory of Cancer Stem Cells and College of Basic Medical Sciences, Dalian Medical University.

Author information

Authors and Affiliations

Authors

Contributions

Ying Lu participated in the ideation, preliminary draft of the manuscript, creation of the graphics, visualization, and general editing. Jun Mao helped with the finance, supported review development, and overall editing. No possible conflicts of interest have been acknowledged by the authors with regard to the research, writing, or publication of this article.

Corresponding author

Correspondence to Ying Lu.

Ethics declarations

Competing interests

The authors claim to have no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Lu, Y. Roles of circRNAs in the progression of colorectal cancer: novel strategies for detection and therapy. Cancer Gene Ther 31, 831–841 (2024). https://doi.org/10.1038/s41417-024-00739-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-024-00739-x

This article is cited by

Search

Quick links