Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hsa_circ_0007590/PTBP1 complex reprograms glucose metabolism by reducing the stability of m6A-modified PTEN mRNA in pancreatic ductal adenocarcinoma

Abstract

The role of circular RNAs (circRNAs) in glucose metabolism in pancreatic duct adenocarcinoma (PDAC) remains elusive. Through RNA sequencing of cells cultured under conditions of glucose deprivation, we identified hsa_circ_0007590. Sanger sequencing and RNase R and Act D treatments were performed to confirm the circular RNA features of hsa_circ_0007590. RNA in situ hybridization (RNA-ISH) and quantitative reverse transcription PCR (qRT-PCR) were used to estimate hsa_circ_0007590 expression in PDAC clinical specimens and cell lines. hsa_circ_0007590 expression was higher in PDAC patients and closely related to the clinicopathological characteristics of the disease. Cytoplasm‒nuclear fractionation and FISH assays demonstrated that hsa_circ_0007590 was located in the nucleus. Gain-of-function and loss-of-function assays were performed to assess the biological behaviors of PDAC cells. Seahorse XF assays were performed to validate the Warburg effect. hsa_circ_0007590 facilitated the proliferation, migration, and invasion of PDAC cells and promoted the Warburg effect. Mass spectrometry, RNA pulldown, RNA immunoprecipitation (RIP), RNA m6A quantification, m6A dot blot, MeRIP, and Western blotting were conducted to investigate the detailed mechanism through which hsa_circ_0007590 produces these effects. Mechanistically, hsa_circ_0007590 targeted PTBP1 and increased the expression of the m6A reader protein YTHDF2, leading to PTEN mRNA degradation and PI3K/AKT/mTOR pathway activation. Overall, hsa_circ_0007590, which targets PTBP1, reprograms glucose metabolism by attenuating the stability of m6A-modified PTEN mRNA and holds potential promise as a therapeutic target for PDAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of hsa_circ_0007590.
Fig. 2: The expression of hsa_circ_0007590 and its clinical significance in pancreatic duct adenocarcinoma (PDAC).
Fig. 3: Hsa_circ_0007590 promotes pancreatic duct adenocarcinoma (PDAC) cell proliferation in vitro and vivo.
Fig. 4: Hsa_circ_0007590 promotes pancreatic duct adenocarcinoma (PDAC) cell migration and invasion.
Fig. 5: Hsa_circ_0007590 facilitates glycolytic metabolism in pancreatic duct adenocarcinoma (PDAC).
Fig. 6: Hsa_circ_0007590 regulates the PTEN/AKT/mTOR pathway through binding PTBP1.
Fig. 7: Hsa_circ_0007590 reduced PTEN mRNA stability through YTHDF2.
Fig. 8: Hsa_circ_0007590 acts as an oncogene by upregulating YTHDF2.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors upon reasonable request. A circRNA profiling database based on RNA sequencing data from low glucose-treated and normal glucose treated MiaPaCa-2 cells was constructed in the GEO (GSE121596).

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA. 2023;73:17–48.

    PubMed  Google Scholar 

  2. Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 2022;163:386–402.e1.

    Article  PubMed  Google Scholar 

  3. Schizas D, Charalampakis N, Kole C, Economopoulou P, Koustas E, Gkotsis E, et al. Immunotherapy for pancreatic cancer: a 2020 update. Cancer Treatment Rev. 2020;86:102016.

    Article  CAS  Google Scholar 

  4. Springfeld C, Ferrone CR, Katz MHG, Philip PA, Hong TS, Hackert T, et al. Neoadjuvant therapy for pancreatic cancer. Nat Rev Clin Oncol. 2023;20:318–37.

    Article  PubMed  Google Scholar 

  5. Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21:475–90.

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Li J, Bian X, Wu C, Hua J, Chang S, et al. CircURI1 interacts with hnRNPM to inhibit metastasis by modulating alternative splicing in gastric cancer. Proc Natl Acad Sci USA. 2021;118:e2012881118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol. 2021;23:278–91.

    Article  CAS  PubMed  Google Scholar 

  8. Meng L, Zhang Y, Wu P, Li D, Lu Y, Shen P, et al. CircSTX6 promotes pancreatic ductal adenocarcinoma progression by sponging miR-449b-5p and interacting with CUL2. Mol Cancer. 2022;21:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Q, Li J, Shen P, Yuan H, Yin J, Ge W, et al. Biological functions, mechanisms, and clinical significance of circular RNA in pancreatic cancer: a promising rising star. Cell Biosci. 2022;12:97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yan B, Li X, Peng M, Zuo Y, Wang Y, Liu P, et al. The YTHDC1/GLUT3/RNF183 axis forms a positive feedback loop that modulates glucose metabolism and bladder cancer progression. Exp Mol Med. 2023;55:1145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, et al. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 2022;15:160.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu Z, Hayashi H, Matsumura K, Ogata Y, Sato H, Shiraishi Y, et al. Hyperglycaemia induces metabolic reprogramming into a glycolytic phenotype and promotes epithelial-mesenchymal transitions via YAP/TAZ-Hedgehog signalling axis in pancreatic cancer. Br J Cancer. 2023;128:844–56.

    Article  CAS  PubMed  Google Scholar 

  13. Ligorio M, Sil S, Malagon-Lopez J, Nieman LT, Misale S, Di Pilato M, et al. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell. 2019;178:160–75.e27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shaashua L, Ben-Shmuel A, Pevsner-Fischer M, Friedman G, Levi-Galibov O, Nandakumar S, et al. BRCA mutational status shapes the stromal microenvironment of pancreatic cancer linking clusterin expression in cancer associated fibroblasts with HSF1 signaling. Nat Commun. 2022;13:6513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu A, Xu J. Circ_03955 promotes pancreatic cancer tumorigenesis and Warburg effect by targeting the miR-3662/HIF-1α axis. Clin Transl Oncol. 2021;23:1905–14.

    Article  CAS  PubMed  Google Scholar 

  16. Zheng D, Huang X, Peng J, Zhuang Y, Li Y, Qu J, et al. CircMYOF triggers progression and facilitates glycolysis via the VEGFA/PI3K/AKT axis by absorbing miR-4739 in pancreatic ductal adenocarcinoma. Cell Death Discov. 2021;7:362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10:4695.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shi J, Rui X, Han C, Wang C, Xu L, Jiang X. circRNF13, a novel N(6)-methyladenosine-modified circular RNA, enhances radioresistance in cervical cancer by increasing CXCL1 mRNA stability. Cell Death Discov. 2023;9:253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen L, He Y, Zhu J, Zhao S, Qi S, Chen X. et al. The roles and mechanism of m(6)A RNA methylation regulators in cancer immunity. Biomed Pharmacother. 2023;163:114839

    Article  CAS  PubMed  Google Scholar 

  20. Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications. Cell. 2022;185:2016–34.

    Article  CAS  PubMed  Google Scholar 

  21. Xia W, Chen W, Ni C, Meng X, Wu J, Yang Q, et al. Chemotherapy-induced exosomal circBACH1 promotes breast cancer resistance and stemness via miR-217/G3BP2 signaling pathway. Breast Cancer Res. 2023;25:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21:669–80.

    Article  PubMed  Google Scholar 

  23. Kumari S, Khan S, Sekhri R, Mandil H, Behrman S, Yallapu MM, et al. Protein kinase D1 regulates metabolic switch in pancreatic cancer via modulation of mTORC1. Br J Cancer. 2020;122:121–31.

    Article  CAS  PubMed  Google Scholar 

  24. Wu L, Jin Y, Zhao X, Tang K, Zhao Y, Tong L, et al. Tumor aerobic glycolysis confers immune evasion through modulating sensitivity to T cell-mediated bystander killing via TNF-α. Cell Metab. 2023;35:1580–1596.e9.

    Article  CAS  PubMed  Google Scholar 

  25. Luo H, Yu Q, Liu Y, Tang M, Liang M, Zhang D, et al. LATS kinase-mediated CTCF phosphorylation and selective loss of genomic binding. Sci Adv. 2020;6:eaaw4651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen K, Hebert K, McConnell E, Cullen N, Cheng T, Awoyode S, et al. LKB1 signaling and patient survival outcomes in hepatocellular carcinoma. Pharmacol Res. 2023;192:106757.

    Article  CAS  PubMed  Google Scholar 

  27. Park JM, Lee DH, Kim DH. Redefining the role of AMPK in autophagy and the energy stress response. Nat Commun. 2023;14:2994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao C, Wang B, Liu E, Zhang Z. Loss of PTEN expression is associated with PI3K pathway-dependent metabolic reprogramming in hepatocellular carcinoma. Cell Commun Signal. 2020;18:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023;22:138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding L, Zheng Q, Lin Y, Wang R, Wang H, Luo W, et al. Exosome-derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase-3-dependent cleavage. Clin Transl Med. 2023;13:e1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Su J, Li R, Chen Z, Liu S, Zhao H, Deng S, et al. N6-methyladenosine modification of FZR1 mRNA promotes gemcitabine resistance in pancreatic cancer. Cancer Res. 2023;83:3059–76.

    Article  CAS  PubMed  Google Scholar 

  32. Lu L, Zheng D, Qu J, Zhuang Y, Peng J, Lan S, et al. METTL16 predicts a favorable outcome and primes antitumor immunity in pancreatic ductal adenocarcinoma. Front Cell Dev Biol. 2022;10:759020.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yao B, Zhang Q, Yang Z, An F, Nie H, Wang H, et al. CircEZH2/miR-133b/IGF2BP2 aggravates colorectal cancer progression via enhancing the stability of m(6)A-modified CREB1 mRNA. Mol Cancer. 2022;21:140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang H, Weng H, Chen J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020;37:270–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Z, Wang Q, Zhao X, Shao L, Liu G, Zheng X. et al. YTHDC1 mitigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA. Cell Death Dis. 2020;11:977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016;7:12626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27:444–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan J, Huang X, Zhang X, Chen Z, Ye C, Xiang W, et al. LncRNA LINC00470 promotes the degradation of PTEN mRNA to facilitate malignant behavior in gastric cancer cells. Biochem Biophys Res Commun. 2020;521:887–93.

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Yao H, Huang J, Li C, Zhang Y, Xu R. et al. METTL3 promotes prostatic hyperplasia by regulating PTEN expression in an m(6)A-YTHDF2-dependent manner. Cell Death Dis. 2022;13:723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China. (No. 82203344, No. 82073150) and the Natural Science Foundation of Guangdong (No. 2021A1515010270).

Author information

Authors and Affiliations

Authors

Contributions

DZ, WC, and JP conducted the majority of the experiments and interpreted of the data. XH performed some of the experiments and collected the samples. YZ and DZ wrote the manuscript. SZ and YZ conceived the study, revised the manuscript, and were responsible for research supervision and funding acquisition. All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Shineng Zhang or Yanyan Zhuang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

We declare that all research activities strictly adhere to the principles outlined in the Declaration of Helsinki. This study was approved by the Ethics Committee of Sun Yat-sen Memorial Hospital, Sun Yat-sen University (No. SYSEC-KY-KS-2019-128). After providing written informed consent, clinical samples and information were collected. The animal experiments were carried out according to the protocol approved by the Institutional Animal Care and Use Committee of Sun Yat-sen University (No. SYSU-IACUC-2021-000427).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, D., Chen, W., Peng, J. et al. Hsa_circ_0007590/PTBP1 complex reprograms glucose metabolism by reducing the stability of m6A-modified PTEN mRNA in pancreatic ductal adenocarcinoma. Cancer Gene Ther 31, 1090–1102 (2024). https://doi.org/10.1038/s41417-024-00786-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-024-00786-4

This article is cited by

Search

Quick links