Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CCDC34 maintains stemness phenotype through β-catenin-mediated autophagy and promotes EGFR-TKI resistance in lung adenocarcinoma

Abstract

Despite recent advances in treatment strategy, lung cancer remains the leading cause of cancer-related mortality worldwide, and it is a serious threat to human health. Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer, and approximately 40–50% of patients with LUAD in Asian populations have epidermal growth factor receptor (EGFR) mutations. The use of EGFR tyrosine kinase inhibitors (EGFR-TKIs) has revolutionarily improved the prognosis of patients with EGFR-mutated LUAD. However, acquired drug resistance is the main cause of treatment failure. Therefore, new therapeutic strategies are necessary to address the resistance to EGFR-TKIs in patients with LUAD. Cancer stemness-related factors lead to multiple-drug resistance in cancer treatment, including EGFR–TKI resistance. Coiled-coil domain-containing 34 (CCDC34) serves as an oncogene in several types of cancer. However, the role and molecular mechanism of CCDC34 in the malignant progression of LUAD have not been reported to date. In the present study, we found that CCDC34 may be associated with LUAD stemness through weighted gene co-expression network analysis (WGCNA). Furthermore, we demonstrated that CCDC34 promoted LUAD stemness properties through β-catenin-mediated regulation of ATG5-induced autophagy, which was conducive to acquired EGFR-TKI resistance in LUAD in vitro and in vivo. Knockdown CCDC34 can synergistically inhibit tumor growth when combined with EGFR-TKIs. This study reveals a positive association between CCDC34 and the stemness phenotype of LUAD, providing new insights into overcoming EGFR-TKI resistance in LUAD by inhibiting CCDC34 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CCDC34 promotes LUAD stem cell-like properties in vitro.
Fig. 2: CCDC34 promotes LUAD mammosphere formation ability and tumorigenic capacity.
Fig. 3: CCDC34 is associated with the susceptibility and resistance of EGFR–TKIs in LUAD.
Fig. 4: CCDC34 knockdown reverses the response of resistant LUAD cells to EGFR-TKI treatment by diminishing stemness.
Fig. 5: CCDC34 promotes LUAD stemness via interacting with β-catenin and regulating the phosphorylation and transcriptional activity of β-catenin.
Fig. 6: CCDC34 maintains LUAD stemness phenotype through β-catenin-mediated regulating of ATG5-induced autophagy.
Fig. 7: High expression level of CCDC34 predicts poor survival in LUAD patients.
Fig. 8: CCDC34-β-catenin and CCDC34-EpCAM axes are associated with poor prognosis in patients with LUAD.

Similar content being viewed by others

Data availability

All data are available upon request made to the first author (yuepingsuda@163.com).

Code availability

(As the reviewer 3 suggested, we have withdrawn the source code of WGCNA from the supplementary material. We apologize for not removing this part from the article).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  2. Pennell NA, Neal JW, Chaft JE, Azzoli CG, Jänne PA, Govindan R, et al. SELECT: A Phase II Trial of Adjuvant Erlotinib in Patients With Resected Epidermal Growth Factor Receptor-Mutant Non-Small-Cell Lung Cancer. J Clin Oncol. 2019;37:97–104.

    CAS  PubMed  Google Scholar 

  3. Shen J, Liu G, Qi H, Xiang X, Shao J. JMJD5 inhibits lung cancer progression by facilitating EGFR proteasomal degradation. Cell Death Dis. 2023;14:657.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Passaro A, Jänne PA, Mok T, Peters S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat Cancer. 2021;2:377–91.

    CAS  PubMed  Google Scholar 

  5. Pan Z, Wang K, Wang X, Jia Z, Yang Y, Duan Y, et al. Cholesterol promotes EGFR-TKIs resistance in NSCLC by inducing EGFR/Src/Erk/SP1 signaling-mediated ERRα re-expression. Mol Cancer. 2022;21:77.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Alam SK, Zhang Y, Wang L, Zhu Z, Hernandez CE, Zhou Y, et al. DARPP-32 promotes ERBB3-mediated resistance to molecular targeted therapy in EGFR-mutated lung adenocarcinoma. Oncogene. 2022;41:83–98.

    CAS  PubMed  Google Scholar 

  7. Song H, Liu D, Wang L, Liu K, Chen C, Wang L, et al. Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Mol Cancer. 2022;21:43.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu L, Ke L, Zhang Z, Yu J, Meng X. Development of EGFR TKIs and Options to Manage Resistance of Third-Generation EGFR TKI Osimertinib: Conventional Ways and Immune Checkpoint Inhibitors. Front Oncol. 2020;10:602762.

    PubMed  PubMed Central  Google Scholar 

  9. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12:31–46.

    CAS  PubMed  Google Scholar 

  10. Nagaraju GP, Farran B, Luong T, El-Rayes BF. Understanding the molecular mechanisms that regulate pancreatic cancer stem cell formation, stemness and chemoresistance: A brief overview. Semin Cancer Biol. 2023;88:67–80.

    CAS  PubMed  Google Scholar 

  11. Zheng Y, Wang L, Yin L, Yao Z, Tong R, Xue J, et al. Lung Cancer Stem Cell Markers as Therapeutic Targets: An Update on Signaling Pathways and Therapies. Front Oncol. 2022;12:873994.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Heng WS, Gosens R, Kruyt F. Lung cancer stem cells: origin, features, maintenance mechanisms and therapeutic targeting. Biochem Pharm. 2019;160:121–33.

    CAS  PubMed  Google Scholar 

  13. He Y, Jiang X, Duan L, Xiong Q, Yuan Y, Liu P, et al. LncRNA PKMYT1AR promotes cancer stem cell maintenance in non-small cell lung cancer via activating Wnt signaling pathway. Mol Cancer. 2021;20:156.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sneha S, Nagare RP, Sidhanth C, Krishnapriya S, Garg M, Ramachandran B, et al. The hedgehog pathway regulates cancer stem cells in serous adenocarcinoma of the ovary. Cell Oncol (Dordr). 2020;43:601–16.

    CAS  PubMed  Google Scholar 

  15. Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics. 2020;10:7053–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jin ML, Jeong KW. Histone modifications in drug-resistant cancers: From a cancer stem cell and immune evasion perspective. Exp Mol Med. 2023;55:1333–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yi Y, Li P, Huang Y, Chen D, Fan S, Wang J, et al. P21-activated kinase 2-mediated β-catenin signaling promotes cancer stemness and osimertinib resistance in EGFR-mutant non-small-cell lung cancer. Oncogene. 2022;41:4318–29.

    CAS  PubMed  Google Scholar 

  18. Yan R, Fan X, Xiao Z, Liu H, Huang X, Liu J, et al. Inhibition of DCLK1 sensitizes resistant lung adenocarcinomas to EGFR-TKI through suppression of Wnt/β-Catenin activity and cancer stemness. Cancer Lett. 2022;531:83–97.

    CAS  PubMed  Google Scholar 

  19. Jia Z, Zhang Y, Yan A, Wang M, Han Q, Wang K, et al. 1,25-dihydroxyvitamin D3 signaling-induced decreases in IRX4 inhibits NANOG-mediated cancer stem-like properties and gefitinib resistance in NSCLC cells. Cell Death Dis. 2020;11:670.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jia Z, Wang K, Duan Y, Hu K, Zhang Y, Wang M, et al. Claudin1 decrease induced by 1,25-dihydroxy-vitamin D3 potentiates gefitinib resistance therapy through inhibiting AKT activation-mediated cancer stem-like properties in NSCLC cells. Cell Death Discov. 2022;8:122.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lei HM, Zhang KR, Wang CH, Wang Y, Zhuang GL, Lu LM, et al. Aldehyde dehydrogenase 1A1 confers erlotinib resistance via facilitating the reactive oxygen species-reactive carbonyl species metabolic pathway in lung adenocarcinomas. Theranostics. 2019;9:7122–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Arasada RR, Shilo K, Yamada T, Zhang J, Yano S, Ghanem R, et al. Notch3-dependent β-catenin signaling mediates EGFR TKI drug persistence in EGFR mutant NSCLC. Nat Commun. 2018;9:3198.

    PubMed  PubMed Central  Google Scholar 

  23. Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett. 2023;565:216225.

    CAS  PubMed  Google Scholar 

  24. Wang J, Zhang YW, Zhang NJ, Yin S, Ruan DJ, He N, et al. Coiled-Coil Domain Containing 80 Suppresses Nonylphenol-Induced Colorectal Cancer Cell Proliferation by Inhibiting the Activation of ERK1/2. Front Cell Dev Biol. 2021;9:759820.

    PubMed  PubMed Central  Google Scholar 

  25. Hong WF, Zhu DX, Chen YJ, Shen XZ, Cui YH, Du SS, et al. Coiled-coil domain-containing 154 promotes colorectal cancer proliferation and metastasis via interacting with minichromosome maintenance complex component 2. Cancer Lett. 2023;578:216460.

    CAS  PubMed  Google Scholar 

  26. Qi W, Shao F, Huang Q. Expression of Coiled-Coil Domain Containing 34 (CCDC34) and its Prognostic Significance in Pancreatic Adenocarcinoma. Med Sci Monit. 2017;23:6012–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Geng W, Liang W, Fan Y, Ye Z, Zhang L. Overexpression of CCDC34 in colorectal cancer and its involvement in tumor growth, apoptosis and invasion. Mol Med Rep. 2018;17:465–73.

    CAS  PubMed  Google Scholar 

  28. Liu LB, Huang J, Zhong JP, Ye GL, Xue L, Zhou MH, et al. High Expression of CCDC34 Is Associated with Poor Survival in Cervical Cancer Patients. Med Sci Monit. 2018;24:8383–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856–67.

    PubMed  PubMed Central  Google Scholar 

  30. Hu DD, Li PC, He YF, Jia W, Hu B. Overexpression of Coiled-Coil Domain-Containing Protein 34 (CCDC34) and its Correlation with Angiogenesis in Esophageal Squamous Cell Carcinoma. Med Sci Monit. 2018;24:698–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin Z, Qu S, Peng W, Yang P, Zhang R, Zhang P, et al. Up-Regulated CCDC34 Contributes to the Proliferation and Metastasis of Hepatocellular Carcinoma. Onco Targets Ther. 2020;13:51–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou M, Chen X, Bai H, Sun Y, Zhang Z, Li S, et al. RABL2A-CCDC34 Axis Promotes Sorafenib Resistance in Hepatocellular Carcinoma. DNA Cell Biol. 2021;40:1418–27.

    CAS  PubMed  Google Scholar 

  33. Wu J, Yue C, Xu W, Li H, Zhu J, Li L. MNX1 facilitates the malignant progress of lung adenocarcinoma through transcriptionally upregulating CCDC34. Oncol Lett. 2023;26:325.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell. 2018;173:338–.e15.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu D, Lin L, Wang Y, Chen L, He Y, Luo Y, et al. PNO1, which is negatively regulated by miR-340-5p, promotes lung adenocarcinoma progression through Notch signaling pathway. Oncogenesis. 2020;9:58.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dev A Jr, Vachher M, Prasad CP. β-catenin inhibitors in cancer therapeutics: intricacies and way forward. Bioengineered. 2023. 14: 2251696.

  37. Gajos-Michniewicz A, Czyz M. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities. Genes Dis. 2024;11:727–46.

    CAS  PubMed  Google Scholar 

  38. Wang J, Yu H, Dong W, Zhang C, Hu M, Ma W, et al. N6-Methyladenosine-Mediated Up-Regulation of FZD10 Regulates Liver Cancer Stem Cells’ Properties and Lenvatinib Resistance Through WNT/β-Catenin and Hippo Signaling Pathways. Gastroenterology. 2023;164:990–1005.

    CAS  PubMed  Google Scholar 

  39. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, et al. Autophagy in major human diseases. EMBO J. 2021;40:e108863.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023;24:560–75.

    CAS  PubMed  Google Scholar 

  41. Wang X, Lee J, Xie C. Autophagy Regulation on Cancer Stem Cell Maintenance, Metastasis, and Therapy Resistance. Cancers (Basel). 2022;14:381.

    CAS  PubMed  Google Scholar 

  42. Mo L, Su B, Xu L, Hu Z, Li H, Du H, et al. MCM7 supports the stemness of bladder cancer stem-like cells by enhancing autophagic flux. iScience. 2022;25:105029.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Y, Li S, Wang S, Yang Q, Wu Z, Zhang M, et al. LIMP-2 enhances cancer stem-like cell properties by promoting autophagy-induced GSK3β degradation in head and neck squamous cell carcinoma. Int J Oral Sci. 2023;15:24.

    PubMed  PubMed Central  Google Scholar 

  44. Zhou C, Liang Y, Zhou L, Yan Y, Liu N, Zhang R, et al. TSPAN1 promotes autophagy flux and mediates cooperation between WNT-CTNNB1 signaling and autophagy via the MIR454-FAM83A-TSPAN1 axis in pancreatic cancer. Autophagy. 2021;17:3175–95.

    CAS  PubMed  Google Scholar 

  45. Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 2021;22:733–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 2021;27:1345–56.

    CAS  PubMed  Google Scholar 

  47. Yan D, Huelse JM, Kireev D, Tan Z, Chen L, Goyal S, et al. MERTK activation drives osimertinib resistance in EGFR-mutant non-small cell lung cancer. J Clin Invest. 2022;132:e150517.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun. 2020;11:2285.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zalaquett Z, Catherine Rita Hachem M, Kassis Y, Hachem S, Eid R, Raphael Kourie H, et al. Acquired resistance mechanisms to osimertinib: The constant battle. Cancer Treat Rev. 2023;116:102557.

    CAS  PubMed  Google Scholar 

  50. Murciano-Goroff YR, Taylor BS, Hyman DM, Schram AM. Toward a More Precise Future for Oncology. Cancer Cell. 2020;37:431–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Q, Yu S, Zhao W, Qin S, Chu Q, Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer. 2018;17:53.

    PubMed  PubMed Central  Google Scholar 

  52. Si J, Ma Y, Bi JW, Xiong Y, Lv C, Li S, et al. Shisa3 brakes resistance to EGFR-TKIs in lung adenocarcinoma by suppressing cancer stem cell properties. J Exp Clin Cancer Res. 2019;38:481.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang P, Li Y, Poleshko A, Medvedeva V, Baulina N, Zhang Y, et al. The Protein Encoded by the CCDC170 Breast Cancer Gene Functions to Organize the Golgi-Microtubule Network. EBioMedicine. 2017;22:28–43.

    PubMed  PubMed Central  Google Scholar 

  54. Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer. 2023;22:172.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakayama S, Sng N, Carretero J, Welner R, Hayashi Y, Yamamoto M, et al. β-catenin contributes to lung tumor development induced by EGFR mutations. Cancer Res. 2014;74:5891–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li K, Peng ZY, Wang R, Li X, Du N, Liu DP, et al. Enhancement of TKI sensitivity in lung adenocarcinoma through m6A-dependent translational repression of Wnt signaling by circ-FBXW7. Mol Cancer. 2023;22:103.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma Q, Yu J, Zhang X, Wu X, Deng G. Wnt/β-catenin signaling pathway-a versatile player in apoptosis and autophagy. Biochimie. 2023;211:57–67.

    CAS  PubMed  Google Scholar 

  58. Xiong XX, Hu DX, Xu L, Lin H, Zhang Y, Li CY, et al. Selective 14-3-3γ Upregulation Promotes Beclin-1-LC3-Autophagic Influx via β-Catenin Interaction in Starved Neurons In Vitro and In Vivo. Neurochem Res. 2019;44:849–58.

    CAS  PubMed  Google Scholar 

  59. Zhu Y, Huang S, Chen S, Chen J, Wang Z, Wang Y, et al. SOX2 promotes chemoresistance, cancer stem cells properties, and epithelial-mesenchymal transition by β-catenin and Beclin1/autophagy signaling in colorectal cancer. Cell Death Dis. 2021;12:449.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang R, Li SW, Liu L, Yang J, Huang G, Sang Y. TRIM11 facilitates chemoresistance in nasopharyngeal carcinoma by activating the β-catenin/ABCC9 axis via p62-selective autophagic degradation of Daple. Oncogenesis. 2020;9:45.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu X, Zhang J, Ma C, Li W, Zeng J, Wang Y, et al. A role for Wnt/β-catenin signalling in suppressing Bacillus Calmette-Guerin-induced macrophage autophagy. Micro Pathog. 2019;127:277–87.

    Google Scholar 

  62. Shen W, Luo P, Sun Y, Zhang W, Zhou N, Zhan H, et al. NRBF2 regulates the chemoresistance of small cell lung cancer by interacting with the P62 protein in the autophagy process. iScience. 2022;25:104471.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions. Cell Death Differ. 2020;27:858–71.

    PubMed  PubMed Central  Google Scholar 

  64. Li L, Wang Y, Jiao L, Lin C, Lu C, Zhang K, et al. Protective autophagy decreases osimertinib cytotoxicity through regulation of stem cell-like properties in lung cancer. Cancer Lett. 2019;452:191–202.

    CAS  PubMed  Google Scholar 

  65. Cao P, Li Y, Shi R, Yuan Y, Gong H, Zhu G, et al. Combining EGFR-TKI With SAHA Overcomes EGFR-TKI-Acquired Resistance by Reducing the Protective Autophagy in Non-Small Cell Lung Cancer. Front Chem. 2022;10:837987.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ning Y, Zheng H, Yang Y, Zang H, Wang W, Zhan Y, et al. YAP1 synergize with YY1 transcriptional co-repress DUSP1 to induce osimertinib resistant by activating the EGFR/MAPK pathway and abrogating autophagy in non-small cell lung cancer. Int J Biol Sci. 2023;19:2458–74.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 82173208), the Key Project of Science & Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2022ZD064) and Tianjin Key Medical Discipline (Specialty) Constrction Project (TJYXZDXK-010A).

Author information

Authors and Affiliations

Contributions

HG, YH and PY conceived the study and designed the experiments. PY, YH, RZ, WG, YW, YL, LC, YF, and YG performed the experiments and analyzed the data. HG, PC, LZ supervised the study and provided insightful discussion on this study. PY wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhiyong Liu, Peng Chen or Hua Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was conducted in accordance with Declaration of Helsinki, and all experiments were approved by the Ethics Committee of Tianjin Medical University Cancer Hospital (approval number: EK20240014). All participants have provided written informed consent to take part in the study.

Consent for publication

All authors have approved the manuscript to submission.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, P., He, Y., Zuo, R. et al. CCDC34 maintains stemness phenotype through β-catenin-mediated autophagy and promotes EGFR-TKI resistance in lung adenocarcinoma. Cancer Gene Ther 32, 104–121 (2025). https://doi.org/10.1038/s41417-024-00843-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-024-00843-y

This article is cited by

Search

Quick links