Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glioblastoma-associated macrophages in glioblastoma: from their function and mechanism to therapeutic advances

Abstract

Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor in adults and has high mortality rates worldwide. GBM progression, treatment, and prognosis are influenced by the tumor microenvironment (TME), which includes immune, stromal, and tumor cells. Among them, glioblastoma-associated macrophages (GAMs) act as key regulators of GBM pathobiology. GAMs exhibit remarkable plasticity, as they can exhibit both protumor and antitumor effects. However, their function is determined by polarization and the TME. In this review, we provide a comprehensive overview of the current understanding of the biology of GAMs in GBM, including their origins, phenotypic diversity, and functional roles. We discuss the intricate crosstalk between GAMs and tumor cells, as well as other immune and stromal components, and highlight the mechanisms underlying GAM-mediated tumor progression, invasion, angiogenesis, and immune system evasion. Furthermore, we explore the therapeutic implications of targeting GAMs in GBM and discuss emerging strategies aimed at reprogramming GAMs toward an antitumorigenic phenotype or selectively depleting protumorigenic subsets. The final aim is to develop innovative therapeutic approaches that disrupt GBMs. By leveraging our increased understanding of GAM biology, we lay the foundation for transformative advances in GBM treatment to improve patient prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of GAMs in GBM progression.
Fig. 2: Polarization of M1 and M2 GAMs.
Fig. 3: Strategies to target GAMS.

Similar content being viewed by others

References

  1. Weller M, Le Rhun E. How did lomustine become standard of care in recurrent glioblastoma? Cancer Treat Rev. 2020;87:102029.

    Article  CAS  PubMed  Google Scholar 

  2. Chen B, Zhou X, Yang L, Zhou H, Meng M, Zhang L, et al. A cuproptosis activation scoring model predicts neoplasm-immunity interactions and personalized treatments in glioma. Comput Biol Med. 2022;148:105924.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang T, Nam DH, Ram Z, Poon WS, Wang J, Boldbaatar D, et al. Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2021;499:60–72.

    Article  CAS  PubMed  Google Scholar 

  4. Wang LJ, Lv P, Lou Y. Alarm signal S100-related signature is correlated with tumor microenvironment and predicts prognosis in glioma. Dis Markers. 2022;2022:4968555.

    PubMed  PubMed Central  Google Scholar 

  5. Seyfrid M, Maich WT, Shaikh VM, Tatari N, Upreti D, Piyasena D et al. CD70 as an actionable immunotherapeutic target in recurrent glioblastoma and its microenvironment. J Immunother Cancer 2022;10:e003289.

  6. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178:835–849.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pan Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022;21:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW, et al. Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 2017;77:2266–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer. Trends Immunol. 2019;40:310–27.

    Article  CAS  PubMed  Google Scholar 

  10. Ochocka N, Segit P, Walentynowicz KA, Wojnicki K, Cyranowski S, Swatler J, et al. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat Commun. 2021;12:1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andersen RS, Anand A, Harwood DSL, Kristensen BW. Tumor-associated microglia and macrophages in the glioblastoma microenvironment and their implications for therapy. Cancers. 2021;13:4255.

  12. Xu C, Xiao M, Li X, Xin L, Song J, Zhan Q, et al. Origin, activation, and targeted therapy of glioma-associated macrophages. Front Immunol. 2022;13:974996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tondepu C, Karumbaiah L. Glycomaterials to investigate the functional role of aberrant glycosylation in glioblastoma. Adv Health Mater. 2022;11:e2101956.

    Article  Google Scholar 

  14. Markovic DS, Vinnakota K, van Rooijen N, Kiwit J, Synowitz M, Glass R, et al. Minocycline reduces glioma expansion and invasion by attenuating microglial MT1-MMP expression. Brain Behav Immun. 2011;25:624–8.

    Article  CAS  PubMed  Google Scholar 

  15. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70:299–312.

    Article  PubMed  Google Scholar 

  16. Chen B, Zhou X, Yang L, Zhou H, Meng M, Wu H, et al. Glioma stem cell signature predicts the prognosis and the response to tumor treating fields treatment. CNS Neurosci Ther. 2022;28:2148–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ling AL, Solomon IH, Landivar AM, Nakashima H, Woods JK, Santos A, et al. Clinical trial links oncolytic immunoactivation to survival in glioblastoma. Nature. 2023;623:157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Czarnywojtek A, Borowska M, Dyrka K, Van Gool S, Sawicka-Gutaj N, Moskal J, et al. Glioblastoma multiforme: the latest diagnostics and treatment techniques. Pharmacology. 2023;108:423–31.

    Article  CAS  PubMed  Google Scholar 

  19. Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, et al. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer. 2022;21:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25:477–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barrette AM, Ronk H, Joshi T, Mussa Z, Mehrotra M, Bouras A, et al. Anti-invasive efficacy and survival benefit of the YAP-TEAD inhibitor verteporfin in preclinical glioblastoma models. Neuro Oncol. 2022;24:694–707.

    Article  CAS  PubMed  Google Scholar 

  22. Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, Duerinck J, et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci. 2021;24:595–610.

    Article  CAS  PubMed  Google Scholar 

  23. Brandenburg S, Blank A, Bungert AD, Vajkoczy P. Distinction of microglia and macrophages in glioblastoma: close relatives, different tasks? Int J Mol Sci. 2020;22:194.

  24. Xuan W, Lesniak MS, James CD, Heimberger AB, Chen P. Context-dependent glioblastoma-macrophage/microglia symbiosis and associated mechanisms. Trends Immunol. 2021;42:280–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goldmann T, Wieghofer P, Jordao MJ, Prutek F, Hagemeyer N, Frenzel K, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol. 2016;17:797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang G, Zhong K, Wang Z, Zhang Z, Tang X, Tong A, et al. Tumor-associated microglia and macrophages in glioblastoma: from basic insights to therapeutic opportunities. Front Immunol. 2022;13:964898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19:20–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arwert EN, Harney AS, Entenberg D, Wang Y, Sahai E, Pollard JW, et al. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep. 2018;23:1239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang Y, Cheng S, Liang G, Honggang L, Wu H. Celastrol inhibits cancer metastasis by suppressing M2-like polarization of macrophages. Biochem Biophys Res Commun. 2018;503:414–9.

    Article  CAS  PubMed  Google Scholar 

  30. Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X et al. The importance of M1-and M2-polarized macrophages in glioma and as potential treatment targets. Brain Sci. 2023;13:1269.

  31. Osterberg N, Ferrara N, Vacher J, Gaedicke S, Niedermann G, Weyerbrock A, et al. Decrease of VEGF-A in myeloid cells attenuates glioma progression and prolongs survival in an experimental glioma model. Neuro Oncol. 2016;18:939–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen X, Zhang L, Zhang IY, Liang J, Wang H, Ouyang M, et al. RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res. 2014;74:7285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blank A, Kremenetskaia I, Urbantat RM, Acker G, Turkowski K, Radke J, et al. Microglia/macrophages express alternative proangiogenic factors depending on granulocyte content in human glioblastoma. J Pathol. 2021;253:160–73.

    Article  CAS  PubMed  Google Scholar 

  34. Joseph JV, Magaut CR, Storevik S, Geraldo LH, Mathivet T, Latif MA, et al. TGF-beta promotes microtube formation in glioblastoma through thrombospondin 1. Neuro Oncol. 2022;24:541–53.

    Article  CAS  PubMed  Google Scholar 

  35. Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L, et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol. 2012;189:444–53.

    Article  CAS  PubMed  Google Scholar 

  36. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.

    Article  CAS  PubMed  Google Scholar 

  37. Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res. 2014;355:687–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cui X, Morales RT, Qian W, Wang H, Gagner JP, Dolgalev I, et al. Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis. Biomaterials. 2018;161:164–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, et al. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med. 2012;18:519–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu H, Sun Y, Zhang Q, Jin W, Gordon RE, Zhang Y, et al. Pro-inflammatory and proliferative microglia drive progression of glioblastoma. Cell Rep. 2021;36:109718.

    Article  CAS  PubMed  Google Scholar 

  41. McFarland BC, Hong SW, Rajbhandari R, Twitty GB Jr, Gray GK, Yu H, et al. NF-kappaB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PLoS ONE. 2013;8:e78728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Agarwal S, Muniyandi P, Maekawa T, Kumar DS. Vesicular systems employing natural substances as promising drug candidates for MMP inhibition in glioblastoma: a nanotechnological approach. Int J Pharmacol. 2018;551:339–61.

    Article  CAS  Google Scholar 

  43. Chen Q, Jin J, Huang X, Wu F, Huang H, Zhan R. EMP3 mediates glioblastoma-associated macrophage infiltration to drive T cell exclusion. J Exp Clin Cancer Res. 2021;40:160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pang L, Khan F, Heimberger AB, Chen P. Mechanism and therapeutic potential of tumor-immune symbiosis in glioblastoma. Trends Cancer. 2022;8:839–54.

    Article  CAS  PubMed  Google Scholar 

  45. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21:485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ellert-Miklaszewska A, Ciechomska IA, Kaminska B. Cannabinoid signaling in glioma cells. Adv Exp Med Biol. 2020;1202:223–41.

    Article  CAS  PubMed  Google Scholar 

  48. Lisi L, Stigliano E, Lauriola L, Navarra P, Dello Russo C. Proinflammatory-activated glioma cells induce a switch in microglial polarization and activation status, from a predominant M2b phenotype to a mixture of M1 and M2a/B polarized cells. ASN Neuro. 2014;6:171–83.

    Article  PubMed  Google Scholar 

  49. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, et al. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol. 2015;11:56–64.

    Article  PubMed  Google Scholar 

  50. Guo S, Wang H, Yin Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front Aging Neurosci. 2022;14:815347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang X, Zhao L, Zhang H, Zhang Y, Ju H, Wang X, et al. The immunosuppressive microenvironment and immunotherapy in human glioblastoma. Front Immunol. 2022;13:1003651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou Z, Xu B, Hu N, Guo Z, Bao W, Shao B, et al. Targeting the macrophage-ferroptosis crosstalk: a novel insight into tumor immunotherapy. Front Biosci. 2022;27:203.

    Article  CAS  Google Scholar 

  54. Kuntzel T, Bagnard D. Manipulating macrophage/microglia polarization to treat glioblastoma or multiple sclerosis. Pharmaceutics 2022;14:344.

  55. Mukhopadhyay S, Chen Y, Sankala M, Peiser L, Pikkarainen T, Kraal G, et al. MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur J Immunol. 2006;36:940–9.

    Article  CAS  PubMed  Google Scholar 

  56. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. 2013;341:1246–9.

    Article  CAS  PubMed  Google Scholar 

  58. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 2013;341:1250–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu X, Ivashkiv LB. Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity. 2009;31:539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12:231–8.

    Article  CAS  PubMed  Google Scholar 

  61. Arora S, Dev K, Agarwal B, Das P, Syed MA. Macrophages: their role, activation and polarization in pulmonary diseases. Immunobiology. 2018;223:383–96.

    Article  CAS  PubMed  Google Scholar 

  62. Li D, Zhang Q, Li L, Chen K, Yang J, Dixit D, et al. beta2-microglobulin maintains glioblastoma stem cells and induces M2-like polarization of tumor-associated macrophages. Cancer Res. 2022;82:3321–34.

    Article  CAS  PubMed  Google Scholar 

  63. Khan F, Pang L, Dunterman M, Lesniak MS, Heimberger AB, Chen P. Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy. J Clin Investig. 2023;133:e163446.

  64. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–40.

    Article  CAS  PubMed  Google Scholar 

  65. Yu-Ju Wu C, Chen CH, Lin CY, Feng LY, Lin YC, Wei KC, et al. CCL5 of glioma-associated microglia/macrophages regulates glioma migration and invasion via calcium-dependent matrix metalloproteinase 2. Neuro Oncol. 2020;22:253–66.

    Article  PubMed  Google Scholar 

  66. Silveira LS, Antunes Bde M, Minari AL, Dos Santos RV, Neto JC, Lira FS. Macrophage polarization: implications on metabolic diseases and the role of exercise. Crit Rev Eukaryot Gene Expr. 2016;26:115–32.

    Article  PubMed  Google Scholar 

  67. Xiao Y, Wang Z, Zhao M, Deng Y, Yang M, Su G, et al. Single-cell transcriptomics revealed subtype-specific tumor immune microenvironments in human glioblastomas. Front Immunol. 2022;13:914236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arcuri C, Fioretti B, Bianchi R, Mecca C, Tubaro C, Beccari T, et al. Microglia-glioma cross-talk: a two way approach to new strategies against glioma. Front Biosci. 2017;22:268–309.

    Article  CAS  Google Scholar 

  69. Sezginer O, Unver N. Dissection of pro-tumoral macrophage subtypes and immunosuppressive cells participating in M2 polarization. Inflamm Res. 2024;73:1411–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007;179:977–83.

    Article  CAS  PubMed  Google Scholar 

  71. Roszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015;2015:816460.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 2022;13:888713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518:547–51.

    Article  PubMed  Google Scholar 

  74. Wei J, Marisetty A, Schrand B, Gabrusiewicz K, Hashimoto Y, Ott M, et al. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. J Clin Investig. 2019;129:137–49.

    Article  PubMed  Google Scholar 

  75. Held-Feindt J, Hattermann K, Muerkoster SS, Wedderkopp H, Knerlich-Lukoschus F, Ungefroren H, et al. CX3CR1 promotes recruitment of human glioma-infiltrating microglia/macrophages (GIMs). Exp Cell Res. 2010;316:1553–66.

    Article  CAS  PubMed  Google Scholar 

  76. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gregoire H, Roncali L, Rousseau A, Cherel M, Delneste Y, Jeannin P, et al. Targeting tumor associated macrophages to overcome conventional treatment resistance in glioblastoma. Front Pharmacol. 2020;11:368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang C, Zhou Y, Gao Y, Zhu Z, Zeng X, Liang W, et al. Radiated glioblastoma cell-derived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis. J Transl Med. 2022;20:388.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tamura R, Ohara K, Sasaki H, Morimoto Y, Kosugi K, Yoshida K, et al. Difference in immunosuppressive cells between peritumoral area and tumor core in glioblastoma. World Neurosurg. 2018;120:e601–e610.

    Article  PubMed  Google Scholar 

  81. Wagner S, Czub S, Greif M, Vince GH, Suss N, Kerkau S, et al. Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer. 1999;82:12–6.

    Article  CAS  PubMed  Google Scholar 

  82. Russo MN, Whaley LA, Norton ES, Zarco N, Guerrero-Cazares H. Extracellular vesicles in the glioblastoma microenvironment: a diagnostic and therapeutic perspective. Mol Asp Med. 2023;91:101167.

    Article  CAS  Google Scholar 

  83. Tan Y, Wang M, Zhang Y, Ge S, Zhong F, Xia G, et al. Tumor-associated macrophages: a potential target for cancer therapy. Front Oncol. 2021;11:693517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ghiringhelli F, Menard C, Martin F, Zitvogel L. The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol Rev. 2006;214:229–38.

    Article  CAS  PubMed  Google Scholar 

  85. Rafii S, Kandoussi S, Ghouzlani A, Naji O, Reddy KP, Ullah Sadiqi R, et al. Deciphering immune microenvironment and cell evasion mechanisms in human gliomas. Front Oncol. 2023;13:1135430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang S, Zhao X, Wu S, Cui D, Xu Z. Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies. Biomark Res. 2023;11:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. He ZN, Zhang CY, Zhao YW, He SL, Li Y, Shi BL, et al. Regulation of T cells by myeloid-derived suppressor cells: emerging immunosuppressor in lung cancer. Discov Oncol. 2023;14:185.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mi Y, Guo N, Luan J, Cheng J, Hu Z, Jiang P, et al. The emerging role of myeloid-derived suppressor cells in the glioma immune suppressive microenvironment. Front Immunol. 2020;11:737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lin C, Wang N, Xu C. Glioma-associated microglia/macrophages (GAMs) in glioblastoma: Immune function in the tumor microenvironment and implications for immunotherapy. Front Immunol. 2023;14:1123853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aljarrah D, Chalour N, Zorgani A, Nissan T, Pranjol MZI. Exploring the gut microbiota and its potential as a biomarker in gliomas. Biomed Pharmacother. 2024;173:116420.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang H, Hong Y, Wu T, Ben E, Li S, Hu L, et al. Role of gut microbiota in regulating immune checkpoint inhibitor therapy for glioblastoma. Front Immunol. 2024;15:1401967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou M, Wu J, Shao Y, Zhang J, Zheng R, Shi Q, et al. Short-chain fatty acids reverses gut microbiota dysbiosis-promoted progression of glioblastoma by up-regulating M1 polarization in the tumor microenvironment. Int Immunopharmacol. 2024;141:112881.

    Article  CAS  PubMed  Google Scholar 

  93. Nissen JC, Selwood DL, Tsirka SE. Tuftsin signals through its receptor neuropilin-1 via the transforming growth factor beta pathway. J Neurochem. 2013;127:394–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Munoz-Garcia J, Cochonneau D, Teletchea S, Moranton E, Lanoe D, Brion R, et al. The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. Theranostics. 2021;11:1568–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yu W, Chen J, Xiong Y, Pixley FJ, Yeung YG, Stanley ER. Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. J Biol Chem. 2012;287:13694–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Benner B, Good L, Quiroga D, Schultz TE, Kassem M, Carson WE, et al. Pexidartinib, a novel small molecule CSF-1R inhibitor in use for tenosynovial giant cell tumor: a systematic review of pre-clinical and clinical development. Drug Des Devel Ther. 2020;14:1693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yan D, Kowal J, Akkari L, Schuhmacher AJ, Huse JT, West BL, et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene. 2017;36:6049–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rao R, Han R, Ogurek S, Xue C, Wu LM, Zhang L, et al. Glioblastoma genetic drivers dictate the function of tumor-associated macrophages/microglia and responses to CSF1R inhibition. Neuro Oncol. 2022;24:584–97.

    Article  CAS  PubMed  Google Scholar 

  99. Elmore MR, Lee RJ, West BL, Green KN. Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation. PLoS ONE. 2015;10:e0122912.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, et al. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat Commun. 2019;10:3758.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Spiteri AG, Ni D, Ling ZL, Macia L, Campbell IL, Hofer MJ, et al. PLX5622 reduces disease severity in lethal CNS infection by off-target inhibition of peripheral inflammatory monocyte production. Front Immunol. 2022;13:851556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Feng X, Liu S, Chen D, Rosi S, Gupta N Rescue of cognitive function following fractionated brain irradiation in a novel preclinical glioma model. Elife 2018; 7.

  104. Lei F, Cui N, Zhou C, Chodosh J, Vavvas DG, Paschalis EI. CSF1R inhibition by a small-molecule inhibitor is not microglia specific; affecting hematopoiesis and the function of macrophages. Proc Natl Acad Sci USA. 2020;117:23336–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zeren N, Afzal Z, Morgan S, Marshall G, Uppiliappan M, Merritt J et al. The chemokine receptor CCR1 mediates microglia-stimulated glioma invasion. Int J Mol Sci. 2023;24:5136.

  106. Almahariq MF, Quinn TJ, Kesarwani P, Kant S, Miller CR, Chinnaiyan P. Inhibition of colony-stimulating factor-1 receptor enhances the efficacy of radiotherapy and reduces immune suppression in glioblastoma. Vivo. 2021;35:119–29.

    Article  CAS  Google Scholar 

  107. Akkari L, Bowman RL, Tessier J, Klemm F, Handgraaf SM, de Groot M et al. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci Transl Med. 2020;12:eaaw7843.

  108. Buonfiglioli A, Hambardzumyan D. Macrophages and microglia: the cerberus of glioblastoma. Acta Neuropathol Commun. 2021;9:54.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 2014;25:846–59.

    Article  CAS  PubMed  Google Scholar 

  110. Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Ruttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5:53.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Korbecki J, Siminska D, Kojder K, Grochans S, Gutowska I, Chlubek D. et al. Fractalkine/CX3CL1 in Neoplastic Processes. Int J Mol Sci. 2020;21:3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Takacs GP, Kreiger CJ, Luo D, Tian G, Garcia JS, Deleyrolle LP, et al. Glioma-derived CCL2 and CCL7 mediate migration of immune suppressive CCR2(+)/CX3CR1(+) M-MDSCs into the tumor microenvironment in a redundant manner. Front Immunol. 2022;13:993444.

    Article  CAS  PubMed  Google Scholar 

  113. Qiang L, Chun-Hong W, Hong-Ming J. Research advances in the role of microglia/marrophages in glioblastoma multiforme. J Int Neurol Neurosurg. 2020;47:540–4.

    Google Scholar 

  114. Friedmann-Morvinski D, Bhargava V, Gupta S, Verma IM, Subramaniam S. Identification of therapeutic targets for glioblastoma by network analysis. Oncogene. 2016;35:608–20.

    Article  CAS  PubMed  Google Scholar 

  115. Garris C, Pittet MJ. Therapeutically reeducating macrophages to treat GBM. Nat Med. 2013;19:1207–8.

    Article  CAS  PubMed  Google Scholar 

  116. Laudati E, Curro D, Navarra P, Lisi L. Blockade of CCR5 receptor prevents M2 microglia phenotype in a microglia-glioma paradigm. Neurochem Int. 2017;108:100–8.

    Article  CAS  PubMed  Google Scholar 

  117. Hira VV, Verbovsek U, Breznik B, Srdic M, Novinec M, Kakar H, et al. Cathepsin K cleavage of SDF-1alpha inhibits its chemotactic activity towards glioblastoma stem-like cells. Biochim Biophys Acta Mol Cell Res. 2017;1864:594–603.

    Article  CAS  PubMed  Google Scholar 

  118. Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res. 2011;17:1603–15.

    Article  CAS  PubMed  Google Scholar 

  119. Fujiwara Y, Komohara Y, Kudo R, Tsurushima K, Ohnishi K, Ikeda T, et al. Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3. Oncol Rep. 2011;26:1533–7.

    CAS  PubMed  Google Scholar 

  120. Fujiwara Y, Komohara Y, Ikeda T, Takeya M. Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and tumor-associated macrophages. Cancer Sci. 2011;102:206–11.

    Article  CAS  PubMed  Google Scholar 

  121. Strepkos D, Markouli M, Klonou A, Piperi C, Papavassiliou AG. Insights in the immunobiology of glioblastoma. J Mol Med. 2020;98:1–10.

    Article  PubMed  Google Scholar 

  122. Saha D, Martuza RL, Rabkin SD. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell. 2017;32:253–67 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Galstyan A, Markman JL, Shatalova ES, Chiechi A, Korman AJ, Patil R, et al. Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nat Commun. 2019;10:3850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chou ST, Patil R, Galstyan A, Gangalum PR, Cavenee WK, Furnari FB, et al. Simultaneous blockade of interacting CK2 and EGFR pathways by tumor-targeting nanobioconjugates increases therapeutic efficacy against glioblastoma multiforme. J Control Release. 2016;244:14–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li Z, Fu WJ, Chen XQ, Wang S, Deng RS, Tang XP, et al. Autophagy-based unconventional secretion of HMGB1 in glioblastoma promotes chemosensitivity to temozolomide through macrophage M1-like polarization. J Exp Clin Cancer Res. 2022;41:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lumniczky K, Szatmari T, Safrany G. Ionizing radiation-induced immune and inflammatory reactions in the brain. Front Immunol. 2017;8:517.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D, Messa C, et al. Portrait of inflammatory response to ionizing radiation treatment. J Inflamm. 2015;12:14.

    Article  Google Scholar 

  128. Lee WH, Sonntag WE, Mitschelen M, Yan H, Lee YW. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int J Radiat Biol. 2010;86:132–44.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol. 2005;7:134–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fahey JM, Emmer JV, Korytowski W, Hogg N, Girotti AW. Antagonistic effects of endogenous nitric oxide in a glioblastoma photodynamic therapy model. Photochem Photobio. 2016;92:842–53.

    Article  CAS  Google Scholar 

  131. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013;24:589–602.

    Article  CAS  PubMed  Google Scholar 

  132. Cheng Y, Song S, Wu P, Lyu B, Qin M, Sun Y, et al. Tumor associated macrophages and tams-based anti-tumor nanomedicines. Adv Health Mater. 2021;10:e2100590.

    Article  Google Scholar 

  133. Singh Y, Pawar VK, Meher JG, Raval K, Kumar A, Shrivastava R, et al. Targeting tumor associated macrophages (TAMs) via nanocarriers. J Control Release. 2017;254:92–106.

    Article  CAS  PubMed  Google Scholar 

  134. Qiu N, Wang G, Wang J, Zhou Q, Guo M, Wang Y, et al. Tumor-associated macrophage and tumor-cell dually transfecting polyplexes for efficient interleukin-12 cancer gene therapy. Adv Mater. 2021;33:e2100137.

    Article  PubMed  Google Scholar 

  135. Li X, Guo X, Ling J, Tang Z, Huang G, He L, et al. Nanomedicine-based cancer immunotherapies developed by reprogramming tumor-associated macrophages. Nanoscale. 2021;13:4705–27.

    Article  CAS  PubMed  Google Scholar 

  136. Zhang F, Parayath NN, Ene CI, Stephan SB, Koehne AL, Coon ME, et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun. 2019;10:3974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhu S, Sun F, Zhao P, Liang G, Sun X, Zeng L, et al. Brain-targeting biomimetic nanoparticles for codelivery of celastrol and LY2157299 for reversing glioma immunosuppression. Int J Pharm. 2022;619:121709.

    Article  CAS  PubMed  Google Scholar 

  138. Deng Y, Chen Q, Wan C, Sun Y, Huang F, Hu Y, et al. Microglia and macrophage metabolism: a regulator of cerebral gliomas. Cell Biosci. 2024;14:49.

    Article  PubMed  PubMed Central  Google Scholar 

  139. van Dalen FJ, van Stevendaal M, Fennemann FL, Verdoes M, Ilina O. Molecular repolarisation of tumour-associated macrophages. Molecules. 2018;24:9.

  140. Park S, Kim M, Zhu J, Lee WK, Altan-Bonnet G, Meltzer P, et al. Inflammation suppression prevents tumor cell proliferation in a mouse model of thyroid cancer. Am J Cancer Res. 2020;10:1857–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. da Fonseca AC, Badie B. Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol. 2013;2013:264124.

    PubMed  Google Scholar 

  142. Hussain SF, Kong LY, Jordan J, Conrad C, Madden T, Fokt I, et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res. 2007;67:9630–6.

    Article  CAS  PubMed  Google Scholar 

  143. Abarca-Merlin DM, Maldonado-Bernal C, Alvarez-Arellano L. Toll-like receptors as therapeutic targets in central nervous system tumors. Biomed Res Int. 2019;2019:5286358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cao Y, Ding S, Zeng L, Miao J, Wang K, Chen G, et al. Reeducating tumor-associated macrophages using CpG@Au nanocomposites to modulate immunosuppressive microenvironment for improved radio-immunotherapy. ACS Appl Mater Interfaces. 2021;13:53504–18.

    Article  CAS  PubMed  Google Scholar 

  145. Lerouge L, Gries M, Chateau A, Daouk J, Lux F, Rocchi P et al. Targeting glioblastoma-associated macrophages for photodynamic therapy using AGuIX((R))-design nanoparticles. Pharmaceutics. 2023;15:997.

  146. Poon CC, Sarkar S, Yong VW, Kelly JJP. Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis. Brain. 2017;140:1548–60.

    Article  PubMed  Google Scholar 

  147. Shi MQ, Xu Y, Fu X, Pan DS, Lu XP, Xiao Y, et al. Advances in targeting histone deacetylase for treatment of solid tumors. J Hematol Oncol. 2024;17:37.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Covarrubias AJ, Aksoylar HI, Horng T. Control of macrophage metabolism and activation by mTOR and Akt signaling. Semin Immunol. 2015;27:286–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gong D, Shi W, Yi SJ, Chen H, Groffen J, Heisterkamp N. TGFbeta signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012;13:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198:1006–14.

    Article  CAS  PubMed  Google Scholar 

  151. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D, et al. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2012;30:282–90.

    Article  CAS  PubMed  Google Scholar 

  152. Li X, Wu C, Chen N, Gu H, Yen A, Cao L, et al. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget. 2016;7:33440–50.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol. 2019;10:1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhao Q, Chu Z, Zhu L, Yang T, Wang P, Liu F, et al. 2-deoxy-d-glucose treatment decreases anti-inflammatory M2 macrophage polarization in mice with tumor and allergic airway inflammation. Front Immunol. 2017;8:637.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zhu Z, Zhang H, Chen B, Liu X, Zhang S, Zong Z, et al. PD-L1-mediated immunosuppression in glioblastoma is associated with the infiltration and M2-polarization of tumor-associated macrophages. Front Immunol. 2020;11:588552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rao G, Latha K, Ott M, Sabbagh A, Marisetty A, Ling X, et al. Anti-PD-1 induces M1 polarization in the glioma microenvironment and exerts therapeutic efficacy in the absence of CD8 cytotoxic T cells. Clin Cancer Res. 2020;26:4699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rivera M, Bander ED, Cisse B. Perspectives on microglia-based immune therapies against glioblastoma. World Neurosurg. 2021;154:228–31.

    Article  PubMed  Google Scholar 

  158. Ni X, Wu W, Sun X, Ma J, Yu Z, He X, et al. Interrogating glioma-M2 macrophage interactions identifies Gal-9/Tim-3 as a viable target against PTEN-null glioblastoma. Sci Adv. 2022;8:eabl5165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhao G, Ding L, Yu H, Wang W, Wang H, Hu Y, et al. M2-like tumor-associated macrophages transmit exosomal miR-27b-3p and maintain glioblastoma stem-like cell properties. Cell Death Discov. 2022;8:350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Qian M, Wang S, Guo X, Wang J, Zhang Z, Qiu W, et al. Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-kappaB pathways. Oncogene. 2020;39:428–42.

    Article  CAS  PubMed  Google Scholar 

  161. Hong S, You JY, Paek K, Park J, Kang SJ, Han EH, et al. Inhibition of tumor progression and M2 microglial polarization by extracellular vesicle-mediated microRNA-124 in a 3D microfluidic glioblastoma microenvironment. Theranostics. 2021;11:9687–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liu Y, Li X, Zhang Y, Wang H, Rong X, Peng J, et al. An miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of glioblastoma multiforme. Oncogene. 2019;38:7399–415.

    Article  CAS  PubMed  Google Scholar 

  163. Fuchs AK, Syrovets T, Haas KA, Loos C, Musyanovych A, Mailander V, et al. Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials. 2016;85:78–87.

    Article  CAS  PubMed  Google Scholar 

  164. Shi L, Gu H. Emerging nanoparticle strategies for modulating tumor-associated macrophage polarization. Biomolecules. 2021;11:1912.

  165. Xiong A, Zhang J, Chen Y, Zhang Y, Yang F. Integrated single-cell transcriptomic analyses reveal that GPNMB-high macrophages promote PN-MES transition and impede T cell activation in GBM. EBioMedicine. 2022;83:104239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhong J, Xing X, Gao Y, Pei L, Lu C, Sun H. et al. Distinct roles of TREM2 in central nervous system cancers and peripheral cancers. Cancer Cell. 2024;42:968–984.

    Article  CAS  PubMed  Google Scholar 

  167. Cui X, Wang Q, Zhou J, Wang Y, Xu C, Tong F, et al. Single-cell transcriptomics of glioblastoma reveals a unique tumor microenvironment and potential immunotherapeutic target against tumor-associated macrophage. Front Oncol. 2021;11:710695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mei Y, Wang X, Zhang J, Liu D, He J, Huang C, et al. Siglec-9 acts as an immune-checkpoint molecule on macrophages in glioblastoma, restricting T-cell priming and immunotherapy response. Nat Cancer. 2023;4:1273–91.

    Article  CAS  PubMed  Google Scholar 

  169. Ye Z, Ai X, Yang K, Yang Z, Fei F, Liao X, et al. Targeting microglial metabolic rewiring synergizes with immune-checkpoint blockade therapy for glioblastoma. Cancer Discov. 2023;13:974–1001.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Qiu J, Zhao R, Ma C, Wang Q, Li B, Qi Y. et al. O-GlcNAcylation stabilized WTAP promotes GBM malignant progression in an N6-methyladenosine-dependent manner. Neuro Oncol. 2024;13:268

    Google Scholar 

  171. Zhang H, Wang Y, Zhao Y, Liu T, Wang Z, Zhang N, et al. PTX3 mediates the infiltration, migration, and inflammation-resolving-polarization of macrophages in glioblastoma. CNS Neurosci Ther. 2022;28:1748–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Uneda A, Kurozumi K, Fujimura A, Fujii K, Ishida J, Shimazu Y, et al. Differentiated glioblastoma cells accelerate tumor progression by shaping the tumor microenvironment via CCN1-mediated macrophage infiltration. Acta Neuropathol Commun. 2021;9:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Xing J, Cai H, Lin Z, Zhao L, Xu H, Song Y, et al. Examining the function of macrophage oxidative stress response and immune system in glioblastoma multiforme through analysis of single-cell transcriptomics. Front Immunol. 2023;14:1288137.

    Article  CAS  PubMed  Google Scholar 

  174. Shao G, Cui X, Wang Y, Luo S, Li C, Jiang Y, et al. Targeting MS4A4A: a novel pathway to improve immunotherapy responses in glioblastoma. CNS Neurosci Ther. 2024;30:e14791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lv W, Lin S, Zuo Z, Huang Z, Wang Y. Involvement of microglia-expressed MS4A6A in the onset of glioblastoma. Eur J Neurosci. 2024;59:2836–49.

    Article  CAS  PubMed  Google Scholar 

  176. Hu W, Li D, Yang Y, Zheng Y, Zeng J, Sai K. TIM-3/CD68 double-high expression in Glioma: Prognostic characteristics and potential therapeutic approaches. Int Immunopharmacol. 2024;139:112665.

    Article  CAS  PubMed  Google Scholar 

  177. Zhao S, Ni K, Xie J, Cheng C, Zhao N, Liu J, et al. Exploring the prognostic value of BRMS1 + microglia based on single-cell anoikis regulator patterns in the immunologic microenvironment of GBM. J Neurooncol. 2024;170:101–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Tsuji S, Kudo U, Takahashi K, Nakamura S, Shimazawa M. The role of progranulin in macrophages of a glioblastoma model. J Neurooncol. 2024;170:319–29.

    Article  CAS  PubMed  Google Scholar 

  179. Sun S, Chen X, Ding N, Zhang M, Li X, Chen L, et al. Gamma-aminobutyric acid-mediated neuro-immune interactions in glioblastoma: Implications for prognosis and immunotherapy response. Life Sci. 2024;357:123067.

    Article  CAS  PubMed  Google Scholar 

  180. Chen L, Liu H, Li Y, Lin X, Xia S, Wanggou S, et al. Functional characterization of TSPAN7 as a novel indicator for immunotherapy in glioma. Front Immunol. 2023;14:1105489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chen Y, He J, Chen R, Wang Z, Dai Z, Liang X, et al. Pan-cancer analysis of the immunological role of PDIA5: a potential target for immunotherapy. Front Immunol. 2022;13:881722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sun J, Wu S, Zhao W, Xue S, Zhang L, Ren J. MAPK-activated protein kinase 2 is associated with poor prognosis of glioma patients and immune inhibition in glioma. Front Oncol. 2024;14:1307992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xiao Y, Yang K, Wang Z, Zhao M, Deng Y, Ji W, et al. CD44-mediated poor prognosis in glioma is associated with M2-polarization of tumor-associated macrophages and immunosuppression. Front Surg. 2021;8:775194.

    Article  PubMed  Google Scholar 

  184. Wu M, Shi Y, Liu Y, Huang H, Che J, Shi J, et al. Exosome-transmitted podoplanin promotes tumor-associated macrophage-mediated immune tolerance in glioblastoma. CNS Neurosci Ther. 2024;30:e14643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yamaguchi H, Morisaka H, Sano K, Nagata K,Ryozawa S, Okamoto K et al. Seeding of a Tumor in the Gastric Wall after Endoscopic Ultrasound-guided Fine-needle Aspiration of Solid Pseudopapillary Neoplasm of the Pancreas. Intern Med. 2020;59:779-782.

  186. Sinha A, Chakrabarti BK. Phase transition in theKolkata Paise Restaurant problem. Chaos. 2020;30:083116..

  187. Li T, Yan D, Wang X, Zhang L, Chen P. Hemocyte Changes During Immune Melanization in Bombyx Mori Infected with Escherichia coli. Insects. 2019;10.

  188. Yarube I, Ayo J, Magaji R, Umar I. Insulintreatment increases brain nitric oxide and oxidative stress, but does not affect memory function in mice. Physiol Behav. 2019;211:112640.

  189. Gutierrez NC, Moecke SE, Caneppele TM, PeroteLC, Batista GR, Huhtalla MF et al. Bond Strength of Composite Resin Restoration Repair: Influence of Silane and Adhesive Systems. J Contemp Dent Pract. 2019;20:880-886.

  190. Owens RA. Exploring an Innovative Course Delivery Method for Accelerated BSN Students. Int J Nurs Educ Scholarsh. 2019;16.

  191. Garde Garcia H, Hernando Arteche A, Useros Rodriguez E, Lopez Galan C, Panos Fagundo E, Garcia Murga JC. [Prostatecarcinosarcoma.]. Arch Esp Urol. 2018;71:614-617.

  192. Zulauf N, Bruggmann D, Groneberg D, Oremek GM. Expressiveness of Bone Markers in Breast Cancer with Bone Metastases. Oncology 2019;97:236-244.

  193. Liu M, Zhao Y, Sun JF, Zhao W, Wang LL, Yu L. [Hematopoietic reconstitution after transplantation of uncontrolled-rate cryopreservation autologous peripheral blood hematopoietic stem cells using -80 degrees C mechanical freezer]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015;23:166-72.

Download references

Funding

This work was supported by the Outstanding Postdoctoral Innovative Talent Project of Hunan Province (No. 2021RC2037) and the Natural Science Foundation of Hunan Province (No. 2022JJ40846).

Author information

Authors and Affiliations

Authors

Contributions

YQ Zhang, B Chen, X Xu, and L Mei designed and drafted the manuscript; YQ Zhang organized the manuscript; B Chen, GZ Liu, HY Wang and Wen Zhong edited the figures; HX He, X Fu, B Chen and X Xia revised the article; all the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Xia Xu, Bo Chen or Lin Mei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

All the authors have agreed on the contents of the manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., He, H., Fu, X. et al. Glioblastoma-associated macrophages in glioblastoma: from their function and mechanism to therapeutic advances. Cancer Gene Ther 32, 595–607 (2025). https://doi.org/10.1038/s41417-025-00905-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-025-00905-9

This article is cited by

Search

Quick links