Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting MTPN sensitizes pancreatic cancer of wild-type BRCA1/2 to Cisplatin-based chemotherapy

Abstract

The clinical application of combination chemotherapy with cisplatin is unsatisfactory for most pancreatic cancer patients with wild-type BRCA1/2 or PALB2 due to resistance. Genes associated with cisplatin resistance in patients without BRCA1/2 or PALB2 mutations should be pursued. Through bioinformatics analysis, we found that Myotrophin (MTPN) expression was correlated with that of nuclear factor kappa B (NF-κB), a protein involved in the regulation of cisplatin sensitivity. Immunohistochemistry revealed that MTPN was more highly expressed in human pancreatic cancer tissues than in normal tissues. MTPN promoted the malignant biological behaviors of pancreatic cancer (PC) cells and activated the epithelial-mesenchymal transition process. Furthermore, MTPN was found to induce cisplatin resistance in PC cells and upregulate BRCA1/2 while promoting DNA repair. The enhancing effects of MTPN on cisplatin resistance and BRCA1/2 up-regulation were abolished by an inhibitor of IκBα phosphorylation. These studies suggested that MTPN may increase cisplatin resistance by activating IκBα to regulate BRCA1/2 expression. In summary, targeting MTPN could be a potential therapeutic strategy, as MTPN knockdown increased the sensitivity to cisplatin-based chemotherapy in pancreatic cancer with wild-type BRCA1/2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bioinformatics analysis of PC and cisplatin.
Fig. 2: Expression analyses and clinical prognostic significance of MTPN in PC.
Fig. 3: MTPN expression affects the biological behaviors of BRCA1/2 wild-type PC cells.
Fig. 4: MTPN increased PC cells with wild-type BRCA1/2 resistance to cisplatin.
Fig. 5: Regulation of BRCA1/2 by MTPN in PC cells in response to cisplatin.
Fig. 6: Cisplatin resistance is linked to the MTPN-dependent induction of phosphorylated IκBα.
Fig. 7: MTPN-induced cisplatin resistance by activating NF-κB and regulate BRCA1/2.
Fig. 8

Similar content being viewed by others

Data availability

Correspondence and requests for materials should be addressed to LF-W (lifuwang@sjtu.edu.cn).

References

  1. Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA. 2021;326:851–62.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Arrington AK, Hsu CH, Schaefer KL, O’Grady CL, Khreiss M, Riall TS. Survival after margin-positive resection in the era of modern chemotherapy for pancreatic cancer: do patients still benefit? J Am Coll Surg. 2021;233:100–9.

    PubMed  Google Scholar 

  3. Philip PA. Gemcitabine and platinum combinations in pancreatic cancer. Cancer. 2002;95:908–11.

    PubMed  CAS  Google Scholar 

  4. Ho GY, Woodward N, Coward JI. Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies. Crit Rev Oncol Hematol. 2016;102:37–46.

    PubMed  Google Scholar 

  5. Jordan P, Carmo-Fonseca M. Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci. 2000;57:1229–35.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.

    PubMed  CAS  Google Scholar 

  7. O’Reilly EM, Lee JW, Zalupski M, Capanu M, Park J, Golan T, et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 Mutation. J Clin Oncol. 2020;38:1378–88.

    PubMed  PubMed Central  Google Scholar 

  8. Evers B, Drost R, Schut E, de Bruin M, van der Burg E, Derksen PW, et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res. 2008;14:3916–25.

    PubMed  CAS  Google Scholar 

  9. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA, et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA. 2008;105:17079–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem. 2000;275:23899–903.

    PubMed  CAS  Google Scholar 

  11. Golan T, Stossel C, Atias D, Buzhor E, Halperin S, Cohen K, et al. Recapitulating the clinical scenario of BRCA-associated pancreatic cancer in pre-clinical models. Int J Cancer. 2018;143:179–83.

    PubMed  CAS  Google Scholar 

  12. Greer JB, Whitcomb DC. Role of BRCA1 and BRCA2 mutations in pancreatic cancer. Gut. 2007;56:601–5.

    PubMed  CAS  Google Scholar 

  13. Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Maintenance Olaparib for germline BRCA-Mutated metastatic pancreatic cancer. N. Engl J Med. 2019;381:317–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Hoesel B, Schmid JA. The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Brabec V, Kasparkova J. Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat. 2005;8:131–46.

    PubMed  CAS  Google Scholar 

  16. Wu W, Xue X, Chen Y, Zheng N, Wang J. Targeting prolyl isomerase Pin1 as a promising strategy to overcome resistance to cancer therapies. Pharm Res. 2022;184:106456.

    CAS  Google Scholar 

  17. Sen S, Kundu G, Mekhail N, Castel J, Misono K, Healy B. Myotrophin: purification of a novel peptide from spontaneously hypertensive rat heart that influences myocardial growth. J Biol Chem. 1990;265:16635–43.

    PubMed  CAS  Google Scholar 

  18. Sivasubramanian N, Adhikary G, Sil PC, Sen S. Cardiac myotrophin exhibits rel/NF-kappa B interacting activity in vitro. J Biol Chem. 1996;271:2812–6.

    PubMed  CAS  Google Scholar 

  19. Gupta S, Purcell NH, Lin A, Sen S. Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy. J Cell Biol. 2002;159:1019–28.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Liu J, Zhang H, Zhang J, Bing Z, Wang Y, Li Q, et al. Identification of robust diagnostic and prognostic gene signatures in different grades of gliomas: a retrospective study. PeerJ. 2021;9:e11350.

    PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Zhang W, Chen L, Chen W, Xu S, Tang L, et al. The ATO/miRNA-885-5p/MTPN axis induces reversal of drug-resistance in cholangiocarcinoma. Cell Oncol. 2021;44:907–16.

    CAS  Google Scholar 

  22. Davis AP, Wiegers TC, Sciaky D, Barkalow F, Strong M, Wyatt B, et al. Comparative Toxicogenomics Database’s 20th anniversary: update 2025. Nucleic Acids Res. 2025;53:D1328–d1334.

    PubMed  Google Scholar 

  23. Knox C, Wilson M, Klinger CM, Franklin M, Oler E, Wilson A, et al. DrugBank 6.0: the DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024;52:D1265–d1275.

    PubMed  CAS  Google Scholar 

  24. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2025 update. Nucleic Acids Res. 2025;53:D1516–d1525.

    PubMed  Google Scholar 

  25. Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016;44:D380–4.

    PubMed  CAS  Google Scholar 

  26. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48:D845–d855.

    PubMed  Google Scholar 

  27. Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (2017);2017:bax028

  28. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Liu X, Li T, Huang X, Wu W, Li J, Wei L, et al. DEPDC1B promotes migration and invasion in pancreatic ductal adenocarcinoma by activating the Akt/GSK3beta/Snail pathway. Oncol Lett. 2020;20:146.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005;7:469–83.

    PubMed  CAS  Google Scholar 

  31. Shen R, Wang Q, Cheng S, Liu T, Jiang H, Zhu J, et al. The biological features of PanIN initiated from oncogenic Kras mutation in genetically engineered mouse models. Cancer Lett. 2013;339:135–43.

    PubMed  CAS  Google Scholar 

  32. Feng C, Song C, Liu Y, Qian F, Gao Y, Ning Z, et al. KnockTF: a comprehensive human gene expression profile database with knockdown/knockout of transcription factors. Nucleic Acids Res. 2020;48:D93–d100.

    PubMed  CAS  Google Scholar 

  33. Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46:D380–d386.

    PubMed  CAS  Google Scholar 

  34. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489:57–74.

  35. Diamant I, Clarke DJB, Evangelista JE, Lingam N, Ma’ayan A. Harmonizome 3.0: integrated knowledge about genes and proteins from diverse multi-omics resources. Nucleic Acids Res. 2025;53:D1016–D1028.

    PubMed  Google Scholar 

  36. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database. 2016;2016:baw100.

  37. Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019;47:W212–w224.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Yevshin I, Sharipov R, Kolmykov S, Kondrakhin Y, Kolpakov F. GTRD: a database on gene transcription regulation-2019 update. Nucleic Acids Res. 2019;47:D100–d105.

    PubMed  CAS  Google Scholar 

  39. Zou Z, Ohta T, Oki S. ChIP-Atlas 3.0: a data-mining suite to explore chromosome architecture together with large-scale regulome data. Nucleic Acids Res. 2024;52:W45–w53.

    PubMed  PubMed Central  Google Scholar 

  40. Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, et al. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2024;52:D174–d182.

    PubMed  CAS  Google Scholar 

  41. Zhang Q, Liu W, Zhang HM, Xie GY, Miao YR, Xia M, et al. hTFtarget: a comprehensive database for regulations of human transcription factors and their targets. Genom Proteom Bioinform. 2020;18:120–8.

    Google Scholar 

  42. Zhou P, Li B, Liu F, Zhang M, Wang Q, Liu Y, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer. 2017;16:52.

    PubMed  PubMed Central  Google Scholar 

  43. Li T, Liu X, Xu B, Wu W, Zang Y, Li J, et al. SKA1 regulates actin cytoskeleton remodelling via activating Cdc42 and influences the migration of pancreatic ductal adenocarcinoma cells. Cell Prolif. 2020;53:e12799.

    PubMed  PubMed Central  Google Scholar 

  44. Zhao B, Qin C, Li Z, Wang Y, Li T, Cao H, et al. Multidrug resistance genes screening of pancreatic ductal adenocarcinoma based on sensitivity profile to chemotherapeutic drugs. Cancer Cell Int. 2022;22:374.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Andrei AZ, Hall A, Smith AL, Bascunana C, Malina A, Connor A, et al. Increased in vitro and in vivo sensitivity of BRCA2-associated pancreatic cancer to the poly(ADP-ribose) polymerase-1/2 inhibitor BMN 673. Cancer Lett. 2015;364:8–16.

    PubMed  CAS  Google Scholar 

  46. Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature. 2008;451:1116–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Yu S, Zhang C, Xie KP. Therapeutic resistance of pancreatic cancer: roadmap to its reversal. Biochim Biophys Acta Rev Cancer. 2021;1875:188461.

    PubMed  CAS  Google Scholar 

  48. Chaft JE, Shyr Y, Sepesi B, Forde PM. Preoperative and postoperative systemic therapy for operable non-small-cell lung cancer. J Clin Oncol. 2022;40:546–55.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Christenson ES, Jaffee E, Azad NS. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: a bright future. Lancet Oncol. 2020;21:e135–e145.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Perkhofer L, Gout J, Roger E, Kude de Almeida F, Baptista Simoes C, Wiesmuller L, et al. DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives. Gut. 2021;70:606–17.

    PubMed  CAS  Google Scholar 

  51. Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, et al. Inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem. 2004;279:23477–85.

    PubMed  CAS  Google Scholar 

  52. Lee CK, Barlogie B, Munshi N, Zangari M, Fassas A, Jacobson J, et al. DTPACE: an effective, novel combination chemotherapy with thalidomide for previously treated patients with myeloma. J Clin Oncol. 2003;21:2732–9.

    PubMed  CAS  Google Scholar 

  53. Biliran H Jr., Banerjee S, Thakur A, Sarkar FH, Bollig A, Ahmed F, et al. c-Myc-induced chemosensitization is mediated by suppression of cyclin D1 expression and nuclear factor-kappa B activity in pancreatic cancer cells. Clin Cancer Res. 2007;13:2811–21.

    PubMed  CAS  Google Scholar 

  54. Xiong Z, Liu E, Yan Y, Silver RT, Yang F, Chen IH, et al. An unconventional antigen translated by a novel internal ribosome entry site elicits antitumor humoral immune reactions. J Immunol. 2006;177:4907–16.

    PubMed  CAS  Google Scholar 

  55. Carra G, Ermondi G, Riganti C, Righi L, Caron G, Menga A, et al. IkappaBalpha targeting promotes oxidative stress-dependent cell death. J Exp Clin Cancer Res. 2021;40:136.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Kim H, D’Andrea AD. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 2012;26:1393–408.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA, Lee JE, et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature. 2016;535:382–7.

    PubMed  Google Scholar 

  58. Yarde DN, Oliveira V, Mathews L, Wang X, Villagra A, Boulware D, et al. Targeting the Fanconi anemia/BRCA pathway circumvents drug resistance in multiple myeloma. Cancer Res. 2009;69:9367–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Volcic M, Karl S, Baumann B, Salles D, Daniel P, Fulda S, et al. NF-kappaB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Res. 2012;40:181–95.

    PubMed  CAS  Google Scholar 

  60. Cremona M, Vandenberg CJ, Farrelly AM, Madden SF, Morgan C, Kalachand R, et al. BRCA mutations lead to XIAP overexpression and sensitise ovarian cancer to inhibitor of apoptosis (IAP) family inhibitors. Br J Cancer. 2022;127:488–99.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Thanks TCGA for sufficient RNA-sequencing data and clinical information.

Funding

This research was supported by grants from The National Natural Science Foundation of China (81870385, 81672719, 81702740).

Author information

Authors and Affiliations

Authors

Contributions

ZxW, XyH contributed to experiments performance, statistical analysis, results integration, and data collection. ZxW, TtB wrote and revised the manuscript and R scripts. YxJ, TtG and WW executed data acquisition and statistical analysis. LfW, BK and QW designed and supervised the study, interpreted the data, and revised the manuscript.

Corresponding authors

Correspondence to Berik Kouken, Qi Wang or Lifu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics statement and consent to participate

Data from the TCGA and GTEx databases were used in our study. Our research involves human tissues derived from tumor and adjacent normal tissues of PC patients. All patients signed an informed consent form. Ethical approval for this study was obtained from the Ethical Committee of Medical Research. There are no clinical trials or animal experiments in our research. All methods were performed in accordance with the relevant guidelines and regulations.

Consent for publication

All authors agree to publish this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Huang, X., Bai, T. et al. Targeting MTPN sensitizes pancreatic cancer of wild-type BRCA1/2 to Cisplatin-based chemotherapy. Cancer Gene Ther 32, 1245–1258 (2025). https://doi.org/10.1038/s41417-025-00925-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-025-00925-5

Search

Quick links