Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated spatial transcriptome and metabolism study reveals metabolic heterogeneity in human bladder cancer

Abstract

Bladder cancer (BC) is a malignancy that originates from the cells lining the bladder and is one of the most common cancers of the urinary system, capable of occurring in any part of the bladder. However, the molecular mechanisms underlying the malignant transformation of BC have not been systematically studied. This study integrated cutting-edge techniques of spatial transcriptomics (ST) and spatial metabolomics (SM) to capture the transcriptomic and metabolomic landscapes of both BC and adjacent normal tissues. ST results revealed a significant upregulation of genes associated with choline metabolism and glucose metabolism, while genes related to sphingolipid metabolism and tryptophan metabolism were significantly downregulated. Additionally, significant metabolic reprogramming was observed in BC tissues, including the upregulation of choline metabolism and glucose metabolism, as well as the downregulation of sphingolipid metabolism and tryptophan metabolism. These alterations may play a crucial role in promoting tumorigenesis and immune evasion of BC. The interpretation of ST and SM data in this study offers new insights into the molecular mechanisms underlying BC progression and provides valuable clues for the prevention and treatment of BC.

Schematic illustration of BC metabolic reprogramming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ST Reveals Spatial Heterogeneity in BC and Adjacent Tissues.
Fig. 2: The differential analysis of BC and adjacent tissues through the integration of ST and SM.
Fig. 3: Upregulation of Choline metabolism in BC tissues.
Fig. 4: In BC tissues, carbon metabolism, particularly the TCA cycle pathway, is upregulated.
Fig. 5: Downregulation of Sphingolipid Metabolism in BC Tissues.
Fig. 6: Downregulation of Tryptophan Metabolism in BC Tissues.

Similar content being viewed by others

Data availability

All data were presented within the article, as well as supplementary online data.

References

  1. Compérat E, Amin MB, Cathomas R, Choudhury A, De Santis M, Kamat A, et al. Current best practice for bladder cancer: a narrative review of diagnostics and treatments. Lancet. 2022;400:1712–21.

    PubMed  Google Scholar 

  2. Lenis AT, Lec PM, Chamie K, Mshs MD. Bladder cancer: a review. JAMA. 2020;324:1980–91.

    PubMed  CAS  Google Scholar 

  3. Dobruch J, Oszczudłowski M. Bladder cancer: current challenges and future directions. Medicina. 2021;57.

  4. Woldu SL, Bagrodia A, Lotan Y. Guideline of guidelines: non-muscle-invasive bladder cancer. BJU Int. 2017;119:371–80.

    PubMed  PubMed Central  Google Scholar 

  5. Jiang DM, Gupta S, Kitchlu A, Meraz-Munoz A, North SA, Alimohamed NS, et al. Defining cisplatin eligibility in patients with muscle-invasive bladder cancer. Nat Rev Urol. 2021;18:104–14.

    PubMed  Google Scholar 

  6. Lopez-Beltran A, Cookson MS, Guercio BJ, Cheng L. Advances in diagnosis and treatment of bladder cancer. BMJ. 2024;384:e076743.

    PubMed  CAS  Google Scholar 

  7. Kirkali Z, Chan T, Manoharan M, Algaba F, Busch C, Cheng L, et al. Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology. 2005;66.

  8. Cheung G, Sahai A, Billia M, Dasgupta P, Khan MS. Recent advances in the diagnosis and treatment of bladder cancer. BMC Med. 2013;11:13.

    PubMed  PubMed Central  Google Scholar 

  9. Tran L, Xiao J-F, Agarwal N, Duex JE, Theodorescu D. Advances in bladder cancer biology and therapy. Nat Rev Cancer. 2021;21:104–21.

    PubMed  CAS  Google Scholar 

  10. Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA: a Cancer J Clinicians. 2020;70:404–23.

    Google Scholar 

  11. Wu Z, Liu J, Dai R, Wu S. Current status and future perspectives of immunotherapy in bladder cancer treatment. Sci China Life Sci. 2021;64:512–33.

    PubMed  Google Scholar 

  12. Ohshima K, Morii E. Metabolic Reprogramming of Cancer Cells during Tumor Progression and Metastasis. Metabolites. 2021;11.

  13. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    PubMed  CAS  Google Scholar 

  14. Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still emerging. Cell Metab. 2022;34:355–77.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Senga SS, Grose RP. Hallmarks of cancer-the new testament. Open Biol. 2021;11:200358.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen Z, Zhou L, Liu L, Hou Y, Xiong M, Yang Y, et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun. 2020;11:5077.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Park JH, Pyun WY, Park HW. Cancer metabolism: phenotype, signaling and therapeutic targets. Cells. 2020;9.

  18. Robles-Remacho A, Sanchez-Martin RM, Diaz-Mochon JJ. Spatial transcriptomics: emerging technologies in tissue gene expression profiling. Anal Chem. 2023;95:15450–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Rao A, Barkley D, França GS, Yanai I. Exploring tissue architecture using spatial transcriptomics. Nature. 2021;596:211–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Park H-E, Jo SH, Lee RH, Macks CP, Ku T, Park J, et al. Spatial transcriptomics: technical aspects of recent developments and their applications in neuroscience and cancer research. Adv Sci. 2023;10:e2206939.

    Google Scholar 

  21. Tian L, Chen F, Macosko EZ. The expanding vistas of spatial transcriptomics. Nat Biotechnol. 2023;41:773–82.

    PubMed  CAS  Google Scholar 

  22. Shi Z-D, Sun Z, Zhu Z-B, Liu X, Chen J-Z, Hao L, et al. Integrated single-cell and spatial transcriptomic profiling reveals higher intratumour heterogeneity and epithelial-fibroblast interactions in recurrent bladder cancer. Clin Transl Med. 2023;13:e1338.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Gouin KH, Ing N, Plummer JT, Rosser CJ, Ben Cheikh B, Oh C, et al. An N-Cadherin 2 expressing epithelial cell subpopulation predicts response to surgery, chemotherapy and immunotherapy in bladder cancer. Nat Commun. 2021;12:4906.

    PubMed  PubMed Central  Google Scholar 

  24. Berrell N, Sadeghirad H, Blick T, Bidgood C, Leggatt GR, O’Byrne K, et al. Metabolomics at the tumor microenvironment interface: Decoding cellular conversations. Med Res. Rev. 2024;44:1121–46.

    PubMed  Google Scholar 

  25. Planque M, Igelmann S, Ferreira Campos AM, Fendt S-M. Spatial metabolomics principles and application to cancer research. Curr Opin Chem Biol. 2023;76:102362.

    PubMed  CAS  Google Scholar 

  26. Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. Mass Spectrom Rev. 2024;43:235–68.

    PubMed  CAS  Google Scholar 

  27. Alexandrov T, Saez-Rodriguez J, Saka SK. Enablers and challenges of spatial omics, a melting pot of technologies. Mol Syst Biol. 2023;19:e10571.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, et al. Applications of multi-omics analysis in human diseases. MedComm (2020). 2023;4:e315.

    PubMed  CAS  Google Scholar 

  29. Du J, Yang Y-C, An Z-J, Zhang M-H, Fu X-H, Huang Z-F, et al. Advances in spatial transcriptomics and related data analysis strategies. J Transl Med. 2023;21:330.

    PubMed  PubMed Central  Google Scholar 

  30. Akhoundova D, Rubin MA. Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future. Cancer Cell. 2022;40:920–38.

    PubMed  CAS  Google Scholar 

  31. Liu X, Peng T, Xu M, Lin S, Hu B, Chu T, et al. Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications. J Hematol Oncol. 2024;17:72.

    PubMed  PubMed Central  Google Scholar 

  32. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34:828–37.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Győrffy B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation. 2024;5:100625.

    PubMed  PubMed Central  Google Scholar 

  34. Menyhart O, Kothalawala WJ, Győrffy B. A gene set enrichment analysis for the cancer hallmarks. J Pharma Anal. 2024.

  35. Glunde K, Penet M-F, Jiang L, Jacobs MA, Bhujwalla ZM. Choline metabolism-based molecular diagnosis of cancer: an update. Expert Rev Mol Diagnostics. 2015;15:735–47.

    CAS  Google Scholar 

  36. Li W, Li C, Liu T, Song Y, Chen P, Liu L, et al. The association of serum choline concentrations with the risk of cancers: a community-based nested case-control study. Sci Rep. 2023;13:22144.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Chen X, Qiu W, Ma X, Ren L, Feng M, Hu S, et al. Roles and mechanisms of choline metabolism in nonalcoholic fatty liver disease and cancers. Front Biosci. (Landmark Ed). 2024;29:182.

    Google Scholar 

  38. Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11:835–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. De Martino S, Iorio E, Cencioni C, Aiello A, Spallotta F, Chirico M, et al. MALAT1 as a regulator of the androgen-dependent Choline Kinase A Gene in the metabolic rewiring of prostate cancer. Cancers. 2022;14.

  40. Awwad HM, Geisel J, Obeid R. The role of choline in prostate cancer. Clin Biochem. 2012;45:1548–53.

    PubMed  CAS  Google Scholar 

  41. Ceci F, Herrmann K, Hadaschik B, Castellucci P, Fanti S. Therapy assessment in prostate cancer using choline and PSMA PET/CT. Eur J Nucl Med Mol Imaging. 2017;44:78–83.

    PubMed  CAS  Google Scholar 

  42. Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24:255–72.

    PubMed  CAS  Google Scholar 

  43. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13:1016–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Hsu C-C, Peng D, Cai Z, Lin H-K. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol. 2022;85:52–68.

    PubMed  CAS  Google Scholar 

  45. Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11:102.

    PubMed  PubMed Central  Google Scholar 

  46. Eniafe J, Jiang S. The functional roles of TCA cycle metabolites in cancer. Oncogene. 2021;40:3351–63.

    PubMed  CAS  Google Scholar 

  47. Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018;9:216–37.

    PubMed  CAS  Google Scholar 

  48. Kuo C-C, Wu J-Y, Wu KK. Cancer-derived extracellular succinate: a driver of cancer metastasis. J Biomed Sci. 2022;29:93.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Krzak G, Willis CM, Smith JA, Pluchino S, Peruzzotti-Jametti L. Succinate Receptor 1: An emerging regulator of myeloid cell function in inflammation. Trends Immunol. 2021;42:45–58.

    PubMed  CAS  Google Scholar 

  50. Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. J Exp Clin Cancer Res : CR. 2020;39:224.

    PubMed  PubMed Central  Google Scholar 

  51. Wang Y-H, Yan Z-Z, Luo S-D, Hu J-J, Wu M, Zhao J, et al. Gut microbiota-derived succinate aggravates acute lung injury after intestinal ischaemia/reperfusion in mice. Eur Respir J. 2023;61.

  52. Tufail M, Jiang C-H, Li N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol Cancer. 2024;23:203.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Pajak B, Siwiak E, Sołtyka M, Priebe A, Zieliński R, Fokt I, et al. 2-Deoxy-d-glucose and its analogs: from diagnostic to therapeutic agents. Intl J Mol Sci. 2019;21.

  54. Yang W-H, Qiu Y, Stamatatos O, Janowitz T, Lukey MJ. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer. 2021;7:790–804.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Janneh AH, Atkinson C, Tomlinson S, Ogretmen B. Sphingolipid metabolism and complement signaling in cancer progression. Trends Cancer. 2023;9:782–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Lee M, Lee SY, Bae Y-S. Functional roles of sphingolipids in immunity and their implication in disease. Exp Mol Med. 2023;55:1110–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Piazzesi A, Afsar SY, van Echten-Deckert G. Sphingolipid metabolism in the development and progression of cancer: one cancer’s help is another’s hindrance. Mol Oncol. 2021;15:3256–79.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Platten M, Nollen EAA, Röhrig UF, Fallarino F, Opitz CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019;18:379–401.

    PubMed  CAS  Google Scholar 

  59. Xue C, Li G, Zheng Q, Gu X, Shi Q, Su Y, et al. Tryptophan metabolism in health and disease. Cell Metab. 2023;35:1304–26.

    PubMed  CAS  Google Scholar 

  60. Sheridan C. IDO inhibitors move center stage in immuno-oncology. Nat Biotechnol. 2015;33:321–2.

    PubMed  CAS  Google Scholar 

  61. Pham H, Torres H, Sharma P. Mental health implications in bladder cancer patients: A review. Urol Oncol. 2019;37.

  62. Seidl C. Targets for Therapy of Bladder Cancer. Semin Nucl Med. 2020;50:162–70.

    PubMed  Google Scholar 

  63. Liu R, Lee J-H, Li J, Yu R, Tan L, Xia Y, et al. Choline kinase alpha 2 acts as a protein kinase to promote lipolysis of lipid droplets. Mol Cell. 2021;81.

  64. Li X, Hu Z, Shi Q, Qiu W, Liu Y, Liu Y, et al. Elevated choline drives KLF5-dominated transcriptional reprogramming to facilitate liver cancer progression. Oncogene. 2024;43:3121–36.

    PubMed  CAS  Google Scholar 

  65. Lv W, Shi L, Pan J, Wang S. Comprehensive prognostic and immunological analysis of CCT2 in pan-cancer. Front Oncol. 2022;12:986990.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Liu W, Lu Y, Yan X, Lu Q, Sun Y, Wan X, et al. Current understanding on the role of CCT3 in cancer research. Front Oncol. 2022;12:961733.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Wettersten HI, Aboud OA, Lara PN, Weiss RH. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol. 2017;13:410–9.

    PubMed  CAS  Google Scholar 

  68. Bougeret C, Jiang S, Keydar I, Avraham H. Functional analysis of Csk and CHK Kinases in breast cancer cells*. J Biol Chem. 2001;276:33711–20.

    PubMed  CAS  Google Scholar 

  69. Lacal JC, Perona R, de Castro J, Cebrián A. Choline Kinase α Inhibitors MN58b and RSM932A enhances the antitumor response to Cisplatin in lung tumor cells. Pharmaceutics. 2022;14.

  70. Mariotto E, Bortolozzi R, Volpin I, Carta D, Serafin V, Accordi B, et al. EB-3D a novel choline kinase inhibitor induces deregulation of the AMPK-mTOR pathway and apoptosis in leukemia T-cells. Biochem Pharm. 2018;155:213–23.

    PubMed  CAS  Google Scholar 

  71. de la Cueva A, Ramírez de Molina A, Alvarez-Ayerza N, Ramos MA, Cebrián A, Del Pulgar TG, et al. Combined 5-FU and ChoKα inhibitors as a new alternative therapy of colorectal cancer: evidence in human tumor-derived cell lines and mouse xenografts. PLoS One. 2013;8:e64961.

    PubMed  PubMed Central  Google Scholar 

  72. Treglia G, Piccardo A, Imperiale A, Strobel K, Kaufmann PA, Prior JO, et al. Diagnostic performance of choline PET for detection of hyperfunctioning parathyroid glands in hyperparathyroidism: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2019;46:751–65.

    PubMed  CAS  Google Scholar 

  73. Castellucci P, Ceci F, Fanti S. Imaging of prostate cancer using 11C-Choline PET/Computed Tomography. Urol Clin North Am. 2018;45:481–7.

    PubMed  Google Scholar 

  74. Hodolič M. Imaging of prostate cancer using 18F-Choline PET/Computed Tomography. PET Clin. 2017;12:173–84.

    PubMed  Google Scholar 

  75. Schmilovitz-Weiss H, Boltin D, Groshar D, Domachevsky L, Rosenbaum E, Issa N, et al. [¹¹C] choline as a potential PET/CT biomarker of liver cirrhosis: A prospective pilot study. Digest Liver Dis. 2021;53:753–9.

    CAS  Google Scholar 

  76. Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, et al. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int. 2024;24:89.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, et al. The cancer metabolic reprogramming and immune response. Mol Cancer. 2021;20:28.

    PubMed  PubMed Central  Google Scholar 

  78. Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21:669–80.

    PubMed  Google Scholar 

  79. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47.

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Sun C, Wang A, Zhou Y, Chen P, Wang X, Huang J, et al. Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer. Nat Commun. 2023;14:2692.

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Zhi Y, Wang Q, Zi M, Zhang S, Ge J, Liu K, et al. Spatial transcriptomic and metabolomic landscapes of oral submucous fibrosis-derived oral squamous cell carcinoma and its tumor microenvironment. Adv Sci. 2024;11:e2306515.

    Google Scholar 

  82. Meng W, Hao Y, He C, Li L, Zhu G. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer. 2019;18:57.

    PubMed  PubMed Central  Google Scholar 

  83. Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023;8:70.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 82473955, 82173842), the Fundamental Research Funds for the Central Universities (2632025TD04), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. We would like to thank the Wuhan Metware Biotechnology Co., Ltd. (Wuhan, China) for spatial multi-omics analysis.

Author information

Authors and Affiliations

Authors

Contributions

Lufeng Zheng designed the research. Yu Lu, Fangdie Ye, Xuedan Han and Zihan Wang analyzed the data. Yu Lu and Fangdie Ye performed the research. Yu Lu and Fangdie Ye wrote the paper. Lufeng Zheng and Xiaoman Li reviewed this paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaoman Li or Lufeng Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Ye, F., Han, X. et al. Integrated spatial transcriptome and metabolism study reveals metabolic heterogeneity in human bladder cancer. Cancer Gene Ther 32, 1177–1190 (2025). https://doi.org/10.1038/s41417-025-00947-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-025-00947-z

Search

Quick links