Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted suppression of tumor growth by CREPT promoter-driven diphtheria toxin fragment A

Abstract

Despite significant advancements in diagnosis and treatment, cancer remains a leading cause of mortality globally. Cancer gene therapy has emerged as a promising strategy, with numerous clinical trials demonstrating its efficacy in targeting tumor cells, vasculature, and immune components. However, precise and selective gene expression regulation remains a challenge. In this study, we demonstrated that the CREPT (cell-cycle related and expression-elevated protein in tumor) promoter holds great potential for targeted cancer gene therapy. CREPT, a tumor-promoting protein as a positive regulator of gene transcription, is highly expressed across various cancer types while exhibiting minimal expression in normal tissues. The CREPT promoter mediated robust and tumor-selective transgene expression in vivo following both local and systemic administration, with only minimal off-target expression detected in blood and none in normal organs. Leveraging this specificity, we engineered an adenovirus encoding diphtheria toxin fragment A under CREPT promoter regulation. This construct was selectively expressed and inhibited protein synthesis, leading cancer cell death in vitro and in vivo. These findings demonstrate that the CREPT promoter may serve as a useful regulatory element for the development of targeted cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CREPT is upregulated in COAD and BRCA.
Fig. 2: The CREPT promoter is hyperactive in COAD and BRCA cell lines.
Fig. 3: The CREPT-EGFP adenovirus preferentially expressed in tumor tissues in vivo.
Fig. 4: Production of DTA-expressing adenovirus in mutant 293 A cell line.
Fig. 5: The CREPT-DTA adenovirus selectively kills cancer cells in vitro.
Fig. 6: The CREPT-DTA adenovirus significantly impairs the growth of subcutaneous xenograft tumors.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ferlay J EM, Lam F, Colombet M, Mery L, Pineros M, et al. Global cancer observatory: cancer today 2021 [Available from: https://gco.iarc.fr/today.

  2. Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes. 2017;8:541–55. https://doi.org/10.3390/genes8020065.

    Article  CAS  Google Scholar 

  3. Alderuccio F, Chan J, Toh B-H. Tweaking the immune system: gene therapy-assisted autologous haematopoietic stem cell transplantation as a treatment for autoimmune disease. Autoimmunity. 2008;41:679–85. https://doi.org/10.1080/08916930802197123.

    Article  CAS  PubMed  Google Scholar 

  4. Okegawa T, Pong R-C, Li Y, Hsieh J-T. The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochim Pol. 2004;51:445–57.

    Article  CAS  PubMed  Google Scholar 

  5. Persano L, Crescenzi M, Indraccolo S. Anti-angiogenic gene therapy of cancer: current status and future prospects. Mol Asp Med. 2007;28:87–114.

    Article  CAS  Google Scholar 

  6. Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019;20:e175–e86. https://doi.org/10.1016/S1470-2045(19)30026-9.

    Article  CAS  PubMed  Google Scholar 

  7. Lazzari C, Bulotta A, Damiano G, Mirabile A, Viganó M, Veronesi G, et al. Angiogenesis inhibition in lung cancer: emerging novel strategies. Curr Opin Oncol. 2022;34:107–14. https://doi.org/10.1097/CCO.0000000000000807.

    Article  CAS  PubMed  Google Scholar 

  8. Xia Y, Du Z, Wang X, Li X. Treatment of uterine sarcoma with rAd-p53 (Gendicine) followed by chemotherapy: clinical study of TP53 gene therapy. Hum Gene Ther. 2018;29:242–50. https://doi.org/10.1089/hum.2017.206.

    Article  CAS  PubMed  Google Scholar 

  9. Hardcastle J, Kurozumi K, Chiocca EA, Kaur B. Oncolytic viruses driven by tumor-specific promoters. Curr Cancer Drug Targets. 2007;7:181–9.

    Article  CAS  PubMed  Google Scholar 

  10. Shafiee F, Aucoin MG, Jahanian-Najafabadi A. Targeted diphtheria toxin-based therapy: a review article. Front Microbiol. 2019;10:2340. https://doi.org/10.3389/fmicb.2019.02340.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Holmes RK. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis. 2000;181:S156–S67.

    Article  CAS  PubMed  Google Scholar 

  12. Li M, Ma D, Chang Z. Current understanding of CREPT and p15RS, carboxy-terminal domain (CTD)-interacting proteins, in human cancers. Oncogene. 2021;40:705–16. https://doi.org/10.1038/s41388-020-01544-0.

    Article  CAS  PubMed  Google Scholar 

  13. Li M, Li J, He C, Jiang G, Ma D, Guan H, et al. An oncoprotein CREPT functions as a co-factor in MYC-driven transformation and tumor growth. J Biol Chem. 2025;301:108030. https://doi.org/10.1016/j.jbc.2024.108030.

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Xu L, Wang J, Wang X, Lin Y, Zou AY, et al. CREPT is required for the metastasis of triple-negative breast cancer through a co-operational-chromatin loop-based gene regulation. Mol Cancer. 2025;24:170. https://doi.org/10.1186/s12943-025-02361-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu D, Wu Y, Wang Y, Ren F, Wang D, Su F, et al. CREPT accelerates tumorigenesis by regulating the transcription of cell-cycle-related genes. Cancer Cell. 2012;21:92–104. https://doi.org/10.1016/j.ccr.2011.12.016.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Qiu H, Hu W, Li S, Yu J. RPRD1B promotes tumor growth by accelerating the cell cycle in endometrial cancer. Oncol Rep. 2014;31:1389–95. https://doi.org/10.3892/or.2014.2990.

    Article  CAS  PubMed  Google Scholar 

  17. Liu T, Li W-M, Wang W-P, Sun Y, Ni Y-F, Xing H, et al. Inhibiting CREPT reduces the proliferation and migration of non-small cell lung cancer cells by down-regulating cell cycle related protein. Am J Transl Res. 2016;8:2097–113.

    PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Wang S, Kang W, Liu C, Dong Y, Ren F, et al. CREPT facilitates colorectal cancer growth through inducing Wnt/β-catenin pathway by enhancing p300-mediated β-catenin acetylation. Oncogene. 2018;37:3485–500. https://doi.org/10.1038/s41388-018-0161-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao Y, Ning B, Tian Y, Lan T, Chu Y, Ren F, et al. CREPT disarms the inhibitory Activity of HDAC1 on oncogene expression to promote tumorigenesis. Cancers. 2022;14:4797. https://doi.org/10.3390/cancers14194797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Motea EA, Fattah FJ, Xiao L, Girard L, Rommel A, Morales JC, et al. Kub5-Hera RPRD1B deficiency promotes “BRCAness” and vulnerability to PARP inhibition in BRCA-proficient breast cancers. Clin Cancer Res. 2018;24:6459–70. https://doi.org/10.1158/1078-0432.CCR-17-1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ding L, Yang L, He Y, Zhu B, Ren F, Fan X, et al. CREPT/RPRD1B associates with Aurora B to regulate Cyclin B1 expression for accelerating the G2/M transition in gastric cancer. Cell Death Dis. 2018;9:1172. https://doi.org/10.1038/s41419-018-1211-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma J, Ren Y, Zhang L, Kong X, Wang T, Shi Y, et al. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression. PLoS ONE. 2017;12:e0174309. https://doi.org/10.1371/journal.pone.0174309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei M, Cao Y, Jia D, Zhao H, Zhang L. CREPT promotes glioma cell proliferation and invasion by activating Wnt/β-catenin pathway and is a novel target of microRNA-596. Biochimie. 2019;162:116–24. https://doi.org/10.1016/j.biochi.2019.04.014.

    Article  CAS  PubMed  Google Scholar 

  24. Yu S, Huang H, Wang S, Xu H, Xue Y, Huang Y, et al. CREPT is a novel predictor of the response to adjuvant therapy or concurrent chemoradiotherapy in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2019;12:3301–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wen N, Bian L, Gong J, Meng Y. Overexpression of cell-cycle related and expression-elevated protein in tumor (CREPT) in malignant cervical cancer. J Int Med Res. 2020;48:300060519895089. https://doi.org/10.1177/0300060519895089.

    Article  CAS  PubMed  Google Scholar 

  26. Li M, Lin Y, Wang J, Yang H, Ma D, Tian Y, et al. CREPT promotes LUAD progression by enhancing the CDK9 and RNAPII assembly to promote ERK-driven gene transcription. Theranostics. 2025;15:8337–59. https://doi.org/10.7150/thno.115572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farooq U, Li J, Chang Z. Disrupting cell cycle machinery: CREPT is an emerging target in cancer therapy. Cancers. 2025;17:2401 https://doi.org/10.3390/cancers17142401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu Y, Zhang Y, Zhang H, Yang X, Wang Y, Ren F, et al. p15RS attenuates Wnt/{beta}-catenin signaling by disrupting {beta}-catenin·TCF4 Interaction. J Biol Chem. 2010;285:34621–31. https://doi.org/10.1074/jbc.M110.148791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin Y, Jiang H, Li J, Ren F, Wang Y, Qiu Y, et al. Microenvironment-induced CREPT expression by cancer-derived small extracellular vesicles primes field cancerization. Theranostics. 2024;14:662–80. https://doi.org/10.7150/thno.87344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Liu C, Duan X, Ren F, Li S, Jin Z, et al. CREPT/RPRD1B, a recently identified novel protein highly expressed in tumors, enhances the β-catenin·TCF4 transcriptional activity in response to Wnt signaling. J Biol Chem. 2014;289:22589–99. https://doi.org/10.1074/jbc.M114.560979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rong Y, Cheng L, Ning H, Zou J, Zhang Y, Xu F, et al. Wilms’ tumor 1 and signal transducers and activators of transcription 3 synergistically promote cell proliferation: a possible mechanism in sporadic Wilms’ tumor. Cancer Res. 2006;66:8049–57.

    Article  CAS  PubMed  Google Scholar 

  32. Hine CM, Seluanov A, Gorbunova V. Use of the Rad51 promoter for targeted anti-cancer therapy. Proc Natl Acad Sci USA. 2008;105:20810–5. https://doi.org/10.1073/pnas.0807990106.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mattheakis LC, Sor F, Collier RJ. Diphthamide synthesis in Saccharomyces cerevisiae: structure of the DPH2 gene. Gene. 1993;132:149–54.

    Article  CAS  PubMed  Google Scholar 

  34. Mattheakis LC, Shen WH, Collier RJ. DPH5, a methyltransferase gene required for diphthamide biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol. 1992;12:4026–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu S, Milne GT, Kuremsky JG, Fink GR, Leppla SH. Identification of the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-ribosylating toxins on translation elongation factor 2. Mol Cell Biol. 2004;24:9487–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ohana P, Bibi O, Matouk I, Levy C, Birman T, Ariel I, et al. Use of H19 regulatory sequences for targeted gene therapy in cancer. Int J Cancer. 2002;98:645–50.

    Article  CAS  PubMed  Google Scholar 

  37. Ohana P, Schachter P, Ayesh B, Mizrahi A, Birman T, Schneider T, et al. Regulatory sequences of H19 and IGF2 genes in DNA-based therapy of colorectal rat liver metastases. J Gene Med. 2005;7:366–74.

    Article  CAS  PubMed  Google Scholar 

  38. Hine CM, Seluanov A, Gorbunova V. Rad51 promoter-targeted gene therapy is effective for in vivo visualization and treatment of cancer. Mol Ther. 2012;20:347–55. https://doi.org/10.1038/mt.2011.215.

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y, Li Z, Xu Z, Tang H, Guo W, Sun X, et al. Use of the XRCC2 promoter for in vivo cancer diagnosis and therapy. Cell Death Dis. 2018;9:420. https://doi.org/10.1038/s41419-018-0453-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng W, Chen J, Huang YH, Sawicki JA. Tightly-regulated suicide gene expression kills PSA-expressing prostate tumor cells. Gene Ther. 2005;12:1573–80.

    Article  CAS  PubMed  Google Scholar 

  41. Abdul-Ghani R, Ohana P, Matouk I, Ayesh S, Ayesh B, Laster M, et al. Use of transcriptional regulatory sequences of telomerase (hTER and hTERT) for selective killing of cancer cells. Mol Ther. 2000;2:539–44.

    Article  CAS  PubMed  Google Scholar 

  42. Sidi AA, Ohana P, Benjamin S, Shalev M, Ransom JH, Lamm D, et al. Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus Calmette-Guerin. J Urol. 2008;180:2379–83. https://doi.org/10.1016/j.juro.2008.08.006.

    Article  PubMed  Google Scholar 

  43. Gofrit ON, Benjamin S, Halachmi S, Leibovitch I, Dotan Z, Lamm DL, et al. DNA based therapy with diphtheria toxin-A BC-819: a phase 2b marker lesion trial in patients with intermediate risk nonmuscle invasive bladder cancer. J Urol. 2014;191:1697–702. https://doi.org/10.1016/j.juro.2013.12.011.

    Article  CAS  PubMed  Google Scholar 

  44. Ma D, Zou Y, Chu Y, Liu Z, Liu G, Chu J, et al. A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Theranostics. 2020;10:3708–21. https://doi.org/10.7150/thno.41677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lan T, Li M, Duan X, Jia H, Cao Y, Wang Y, et al. Regulation of revival stem cell differentiation by CREPT/RPRD1B during intestinal regeneration. Cell Biosci. 2025;15:98. https://doi.org/10.1186/s13578-025-01434-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang L, Yang H, Chu Y, Song Y, Ding L, Zhu B, et al. CREPT is required for murine stem cell maintenance during intestinal regeneration. Nat Commun. 2021;12:270. https://doi.org/10.1038/s41467-020-20636-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang M, Wu B, Tang K, Wang X, Liu X, Duan Y, et al. Cell-cycle-related and expression elevated protein in tumor upregulates the antioxidant genes via activation of NF-κB/Nrf2 in acute liver injury. Toxics. 2024;12:893. https://doi.org/10.3390/toxics12120893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A, et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med. 2000;6:1134–9.

    Article  CAS  PubMed  Google Scholar 

  49. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000;19:2–12.

    Article  CAS  PubMed  Google Scholar 

  50. Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 2018;36:1419–27. https://doi.org/10.1200/JCO.2017.75.8219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ulasov IV, Tyler MA, Rivera AA, Nettlebeck DM, Douglas JT, Lesniak MS. Evaluation of E1A double mutant oncolytic adenovectors in anti-glioma gene therapy. J Med Virol. 2008;80:1595–603. https://doi.org/10.1002/jmv.21264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lau L, Gray EE, Brunette RL, Stetson DB. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science. 2015;350:568–71. https://doi.org/10.1126/science.aab3291.

    Article  CAS  PubMed  Google Scholar 

  53. Kent LN, Leone G. The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer. 2019;19:326–38. https://doi.org/10.1038/s41568-019-0143-7.

    Article  CAS  PubMed  Google Scholar 

  54. Kitajima S, Li F, Takahashi C. Tumor milieu controlled by rb tumor suppressor. Int J Mol Sci. 2020;21:2450. https://doi.org/10.3390/ijms21072450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koch P, Gatfield J, Löber C, Hobom U, Lenz-Stöppler C, Roth J, et al. Efficient replication of adenovirus despite the overexpression of active and nondegradable p53. Cancer Res. 2001;61:5941–7.

    CAS  PubMed  Google Scholar 

  56. O’Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A, et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell. 2004;6:611–23.

    Article  PubMed  Google Scholar 

  57. Ramachandra M, Rahman A, Zou A, Vaillancourt M, Howe JA, Antelman D, et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat Biotechnol. 2001;19:1035–41.

    Article  CAS  PubMed  Google Scholar 

  58. Gürlevik E, Woller N, Schache P, Malek NP, Wirth TC, Zender L, et al. p53-dependent antiviral RNA-interference facilitates tumor-selective viral replication. Nucleic Acids Res. 2009;37:e84. https://doi.org/10.1093/nar/gkp374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996;274:373–6.

    Article  CAS  PubMed  Google Scholar 

  60. Koodie L, Robertson MG, Chandrashekar M, Ruth G, Dunning M, Bianco RW, et al. Rodents versus pig model for assessing the performance of serotype chimeric Ad5/3 oncolytic adenoviruses. Cancers. 2019;11:198. https://doi.org/10.3390/cancers11020198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zafar S, Quixabeira DCA, Kudling TV, Cervera-Carrascon V, Santos JM, Grönberg-Vähä-Koskela S, et al. Ad5/3 is able to avoid neutralization by binding to erythrocytes and lymphocytes. Cancer Gene Ther. 2021;28:442–54. https://doi.org/10.1038/s41417-020-00226-z.

    Article  CAS  PubMed  Google Scholar 

  62. Amit D, Tamir S, Birman T, Gofrit ON, Hochberg A. Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of IGF2-P3 and IGF2-P4 regulatory sequences. Int J Clin Exp Med. 2011;4:91–102.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Kuancan Liu from Central Laboratory, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China for providing plasmid pBSDT-AII.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82430087 to ZC) and grants from the Science and Technology Bureau of Jiaxing city, Zhejiang, China (2024AZ30004 to SJ).

Author information

Authors and Affiliations

Authors

Contributions

JL, LMD, ZC, and FR conceived and designed the project. JL, WW, and GJ designed and performed experiments. JL acquired, analyzed, and visualized data. JL wrote the original draft of the paper. LMD, YW, SJQ, ZC, SJ, LMY and FR revised the manuscript.

Corresponding authors

Correspondence to Jian Sheng, Mingyang Li or Fangli Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal experiments were performed in accordance with relevant guidelines and regulations and were approved by the Institutional Animal Care and Use Committee of Tsinghua University. The animal work was conducted under the protocol 20-CZJ-2. The research involving human participants was approved by the Clinical Ethics Committee of the Chinese PLA General Hospital (Approval Number: S2022-610-01). Informed consent was obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, M., Wang, W. et al. Targeted suppression of tumor growth by CREPT promoter-driven diphtheria toxin fragment A. Cancer Gene Ther 33, 145–154 (2026). https://doi.org/10.1038/s41417-025-00961-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41417-025-00961-1

Search

Quick links