Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PRDX1 depletion predisposes to ferroptosis through inhibiting the cAMP pathway in B-cell acute lymphoblastic leukemia

Abstract

B-cell acute lymphoblastic leukemia (B-ALL) is a hematologic malignancy commonly found in pediatric patients. This study aims to screen hub genes in B-ALL and elucidate the role of peroxiredoxin 1 (PRDX1) in the modulation of ferroptosis. Bioinformatics analyses were conducted to identify pivotal genes in the GSE17703 and GSE48558 datasets. The biological effects of PRDX1 deletion in B-ALL cells and the xenograft tumor were evaluated using a series of functional assays. Ferroptosis was induced in B-ALL cells using erastin. Transcriptome sequencing was performed on Nalm-6 cells before and after PRDX1 knockdown. Forskolin was employed to explore the role of PRDX1 in the cyclic adenosine monophosphate (cAMP) pathway. Four pivotal genes were identified, with two genes upregulated and two downregulated. Depletion of PRDX1 suppressed the proliferative, migratory, and invasive abilities of B-ALL cells, whereas PRDX1 overexpression exerted the opposite effects. PRDX1 silencing promoted erastin-induced ferroptosis, including elevated levels of COX2, ACSL4, ferrous ions, ROS, and MDA, while reducing GPX4, GSH, and SOD levels. PRDX1 knockdown further reduced the viability of B-ALL cells treated with the ferroptosis activator ML210, and treatment with the ferroptosis inhibitor liproxstatin-1 significantly reversed the suppressive effect of PRDX1 knockdown on xenograft tumor growth. Mechanically, PRDX1 deletion triggered ferroptosis in B-ALL cells by inhibiting the cAMP pathway. PRDX1 deficiency modulates ferroptosis in B-ALL cells by blocking the cAMP pathway, which offer a novel perspective on the pathogenesis of B-ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis and verification of hub genes.
Fig. 2: PRDX1 and HSPB1 regulate each other’s expression and modulate CFLAR and MAP3K5 mRNA levels in B-ALL cell lines.
Fig. 3: PRDX1 silencing suppresses proliferation, migration, and invasion of B-ALL cells.
Fig. 4: PRDX1 overexpression promotes the malignant phenotype of B-ALL cells.
Fig. 5: PRDX1 depletion predisposes ferroptosis of B-ALL cells.
Fig. 6: Downregulation of PRDX1 attenuates tumorigenicity of B-ALL and facilitates ferroptosis in vivo.
Fig. 7: Analysis of potential pathways involved in B-ALL.
Fig. 8: PRDX1 knockdown affects ferroptosis via the cAMP pathway in B-ALL cells.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request. Publicly available gene expression datasets GSE17703 and GSE48558 were obtained from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).

Code availability

The R code for all bioinformatics analyses in this study is available by contacting the corresponding authors.

References

  1. Delahaye MC, Salem KI, Pelletier J, Aurrand-Lions M, Mancini SJC. Toward therapeutic targeting of bone marrow leukemic niche protective signals in B-cell acute lymphoblastic leukemia. Front Oncol. 2020;10:606540.

    Article  PubMed  Google Scholar 

  2. Liu Z, Li Y, Shi C. Monitoring minimal/measurable residual disease in B-cell acute lymphoblastic leukemia by flow cytometry during targeted therapy. Int J Hematol. 2021;113:337–43.

    Article  PubMed  Google Scholar 

  3. Panuciak K, Nowicka E, Mastalerczyk A, Zawitkowska J, Niedzwiecki M, Lejman M. Overview on aneuploidy in childhood B-cell acute lymphoblastic leukemia. Int J Mol Sci. 2023;24:8764.

  4. Lee AQ, Konishi H, Helmke E, Ijiri M, Lerot JMA, Hicks E, et al. Cmpd10357 to treat B-cell acute lymphoblastic leukemia. Exp Hematol. 2023;119-120:8–13.e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao H, Tang C, Wang M, Zhao H, Zhu Y. Ferroptosis as an emerging target in rheumatoid arthritis. Front Immunol. 2023;14:1260839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen H, Han Z, Wang Y, Su J, Lin Y, Cheng X, et al. Targeting ferroptosis in bone-related diseases: facts and perspectives. J Inflamm Res. 2023;16:4661–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Daolin T, Xin C, Rui K, Guido K. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25.

    Article  Google Scholar 

  9. Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22:381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lan H, Gao Y, Zhao Z, Mei Z, Wang F. Ferroptosis: redox imbalance and hematological tumorigenesis. Front Oncol. 2022;12:834681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang X, Wang Y, Zhu Y, Guo Y, Liu B. Basic mechanisms and novel potential therapeutic targets for ferroptosis in acute myeloid leukemia. Ann Hematol. 2023;102:1985–99.

    Article  CAS  PubMed  Google Scholar 

  12. Grignano E, Birsen R, Chapuis N, Bouscary D. From iron chelation to overload as a therapeutic strategy to induce ferroptosis in leukemic cells. Front Oncol. 2020;10:586530.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lalonde ME, Sasseville M, Gelinas AM, Milanese JS, Beland K, Drouin S, et al. Genome-wide CRISPR screens identify ferroptosis as a novel therapeutic vulnerability in acute lymphoblastic leukemia. Haematologica. 2023;108:382–93.

    Article  CAS  PubMed  Google Scholar 

  14. Schernthaner-Reiter MH, Trivellin G, Stratakis CA. Chaperones, somatotroph tumors and the cyclic AMP (cAMP)-dependent protein kinase (PKA) pathway. Mol Cell Endocrinol. 2020;499:110607.

    Article  CAS  PubMed  Google Scholar 

  15. Perez DR, Sklar LA, Chigaev A, Matlawska-Wasowska K. Drug repurposing for targeting cyclic nucleotide transporters in acute leukemias—a missed opportunity. Semin Cancer Biol. 2021;68:199–208.

    Article  CAS  PubMed  Google Scholar 

  16. Afshari H, Noori S, Shokri B, Zarghi A. Co-treatment of naringenin and ketoprofen-RGD suppresses cell proliferation via calmodulin/PDE/cAMP/PKA axis pathway in leukemia and ovarian cancer cells. Iran J Pharm Res. 2023;22:e136131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Chen J, Yang W, Liu H, Wang J, Xiao J, et al. mPGES-1/PGE2 promotes the growth of T-ALL cells in vitro and in vivo by regulating the expression of MTDH via the EP3/cAMP/PKA/CREB pathway. Cell Death Dis. 2020;11:221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Budak B, Tukel EY, Turanli B, Kiraz Y. Integrated systems biology analysis of acute lymphoblastic leukemia: unveiling molecular signatures and drug repurposing opportunities. Ann Hematol. 2024;103:4121–34.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang Z, Zhao L, Wei X, Guo Q, Zhu X, Wei R, et al. Integrated bioinformatic analysis of microarray data reveals shared gene signature between MDS and AML. Oncol Lett. 2018;16:5147–59.

    PubMed  PubMed Central  Google Scholar 

  20. Zhou N, Yuan X, Du Q, Zhang Z, Shi X, Bao J, et al. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res. 2023;51:D571–82.

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Qiu Y, Zhang H, Chang N, Hu Y, Chen J, et al. Histone acetylation by HBO1 (KAT7) activates Wnt/beta-catenin signaling to promote leukemogenesis in B-cell acute lymphoblastic leukemia. Cell Death Dis. 2023;14:498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang H, Kang R, Liu J, Tang D. ATF4 in cellular stress, ferroptosis, and cancer. Arch Toxicol. 2024;98:1025–41.

    Article  CAS  PubMed  Google Scholar 

  23. Ma X, Xu J, Gao N, Tian J, Song T. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury via inhibiting ferroptosis by the cAMP/PKA/CREB pathway. Mol Cell Probes. 2023;68:101899.

    Article  CAS  PubMed  Google Scholar 

  24. Yasuda T, Sanada M, Tsuzuki S, Hayakawa F. Oncogenic lesions and molecular subtypes in adults with B-cell acute lymphoblastic leukemia. Cancer Sci. 2023;114:8–15.

    Article  CAS  PubMed  Google Scholar 

  25. Wu LX, Zhao MY, Yan N, Zhou YL, Cao LM, Qin YZ, et al. Extracellular matrix protein 1 (ECM1) is a potential biomarker in B cell acute lymphoblastic leukemia. Clin Exp Med. 2024;24:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han C, Zheng J, Li F, Guo W, Cai C. Novel prognostic signature for acute myeloid leukemia: bioinformatics analysis of combined CNV-driven and ferroptosis-related genes. Front Genet. 2022;13:849437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang C, Shao T, Zhang H, Zhang N, Shi X, Liu X, et al. MiR-425 expression profiling in acute myeloid leukemia might guide the treatment choice between allogeneic transplantation and chemotherapy. J Transl Med. 2018;16:267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Yao ZQ, Moorman JP, Xu Y, Ning S. Gene expression profiling identifies IRF4-associated molecular signatures in hematological malignancies. PLoS ONE. 2014;9:e106788.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guan X, Ruan Y, Che X, Feng W. Dual role of PRDX1 in redox-regulation and tumorigenesis: past and future. Free Radic Biol Med. 2024;210:120–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yan XS, Sun YJ, Du J, Niu WY, Qiao H, Yin XC. Effects of ferroptosis-related gene HSPB1 on acute myeloid leukemia. Int J Lab Hematol. 2024;46:899–909.

    Article  PubMed  Google Scholar 

  31. Lin Y, Shen X, Ke Y, Lan C, Chen X, Liang B, et al. Activation of osteoblast ferroptosis via the METTL3/ASK1-p38 signaling pathway in high glucose and high fat (HGHF)-induced diabetic bone loss. FASEB J. 2022;36:e22147.

    Article  CAS  PubMed  Google Scholar 

  32. Shi W, Wang J, Chen J, Jin X, Wang Y, Yang L. Abrogating PDK4 activates autophagy-dependent ferroptosis in breast cancer via ASK1/JNK pathway. J Cancer Res Clin Oncol. 2024;150:218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi WK, Liu YX, Qiu XY, Zhou JY, Zhou JL, Lin GL. Construction and validation of a novel Ferroptosis-related gene signature predictive model in rectal Cancer. BMC Genom. 2022;23:764.

    Article  CAS  Google Scholar 

  34. Yang L, Liu J, Liu S. Clinical significance and immune landscape of a novel ferroptosis-related prognosis signature in osteosarcoma. BMC Cancer. 2023;23:229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qiu CJ, Wang XB, Zheng ZR, Yang CZ, Lin K, Zhang K, et al. Development and validation of a ferroptosis-related prognostic model in pancreatic cancer. Investig New Drugs. 2021;39:1507–22.

    Article  CAS  Google Scholar 

  36. Iqbal MJ, Kabeer A, Abbas Z, Siddiqui HA, Calina D, Sharifi-Rad J, et al. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun Signal. 2024;22:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Song C, Xiong G, Yang S, Wei X, Ye X, Huang W, et al. PRDX1 stimulates non-small-cell lung carcinoma to proliferate via the Wnt/beta-Catenin signaling. Panminerva Med. 2023;65:37–42.

    Article  PubMed  Google Scholar 

  38. Shen Y, You Z, Li L, Tang X, Shan X. The interaction of PRDX1 with Cofilin promotes oral squamous cell carcinoma metastasis. Int J Cancer. 2024;155:1290–302.

    Article  CAS  PubMed  Google Scholar 

  39. Lu E, Hu X, Pan C, Chen J, Xu Y, Zhu X. Up-regulation of peroxiredoxin-1 promotes cell proliferation and metastasis and inhibits apoptosis in cervical cancer. J Cancer. 2020;11:1170–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Feng Y, Zhang T, Zhang Z, Liang Y, Wang H, Chen Y, et al. The super-enhancer-driven lncRNA LINC00880 acts as a scaffold between CDK1 and PRDX1 to sustain the malignance of lung adenocarcinoma. Cell Death Dis. 2023;14:551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Komorowski L, Dabkowska A, Madzio J, Pastorczak A, Szczygiel K, Janowska M, et al. Concomitant inhibition of the thioredoxin system and nonhomologous DNA repair potently sensitizes Philadelphia-positive lymphoid leukemia to tyrosine kinase inhibitors. Hemasphere. 2024;8:e56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Song Y, Wang X, Sun Y, Yu N, Tian Y, Han J, et al. PRDX1 inhibits ferroptosis by binding to Cullin-3 as a molecular chaperone in colorectal cancer. Int J Biol Sci. 2024;20:5070–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lai W, Zhu W, Wu J, Huang J, Li X, Luo Y, et al. HJURP inhibits sensitivity to ferroptosis inducers in prostate cancer cells by enhancing the peroxidase activity of PRDX1. Redox Biol. 2024;77:103392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fan X, Liu F, Wang X, Wang Y, Chen Y, Shi C, et al. LncFASA promotes cancer ferroptosis via modulating PRDX1 phase separation. Sci China Life Sci. 2024;67:488–503.

    Article  CAS  PubMed  Google Scholar 

  45. Gong C, Ji Q, Wu M, Tu Z, Lei K, Luo M, et al. Ferroptosis in tumor immunity and therapy. J Cell Mol Med. 2022;26:5565–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bruedigam C, Porter AH, Song A, Vroeg In de Wei G, Stoll T, Straube J, et al. Imetelstat-mediated alterations in fatty acid metabolism to induce ferroptosis as a therapeutic strategy for acute myeloid leukemia. Nat Cancer. 2024;5:47–65.

    Article  CAS  PubMed  Google Scholar 

  47. Yang L, Wang H, Yang X, Wu Q, An P, Jin X, et al. Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms. Signal Transduct Target Ther. 2020;5:138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bajor M, Graczyk-Jarzynka A, Marhelava K, Kurkowiak M, Rahman A, Aura C, et al. Triple Combination of ascorbate, menadione and the inhibition of peroxiredoxin-1 produces synergistic cytotoxic effects in triple-negative breast cancer cells. Antioxidants. 2020;9:320.

  49. Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer. 2024;23:251.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xu C, Sun S, Johnson T, Qi R, Zhang S, Zhang J, et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep. 2021;35:109235.

    Article  CAS  PubMed  Google Scholar 

  51. Jiao L, Wei J, Ye J, Zhang C. Prognostic value of peroxiredoxin-1 expression in patients with solid tumors: a meta-analysis of cohort study. Dis Markers. 2021;2021:9508702.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li Z, Liu G, Chen Z, Li K, Yu Z, He C, et al. Targeting PRDX1 impairs acute myeloid leukemic blasts and stem cells by disrupting redox homeostasis. Cell Death Dis. 2025;16:627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ding C, Fan X, Wu G. Peroxiredoxin 1—an antioxidant enzyme in cancer. J Cell Mol Med. 2017;21:193–202.

    Article  CAS  PubMed  Google Scholar 

  54. Chen HR, Sun Y, Mittler G, Rumpf T, Shvedunova M, Grosschedl R, et al. MOF-mediated PRDX1 acetylation regulates inflammatory macrophage activation. Cell Rep. 2024;43:114682.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang H, Kong Q, Wang J, Jiang Y, Hua H. Complex roles of cAMP-PKA-CREB signaling in cancer. Exp Hematol Oncol. 2020;9:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu C, Zhang C, Wu H, Zhao Z, Wang Z, Zhang X, et al. The AKR1C1-CYP1B1-cAMP signaling axis controls tumorigenicity and ferroptosis susceptibility of extrahepatic cholangiocarcinoma. Cell Death Differ. 2025;32:506–20.

    Article  CAS  PubMed  Google Scholar 

  57. Li L, Xing T, Chen Y, Xu W, Fan B, Ju G, et al. In vitro CRISPR screening uncovers CRTC3 as a regulator of IFN-gamma-induced ferroptosis of hepatocellular carcinoma. Cell Death Discov. 2023;9:331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shan G, Bi G, Zhao G, Liang J, Bian Y, Zhang H, et al. Inhibition of PKA/CREB1 pathway confers sensitivity to ferroptosis in non-small cell lung cancer. Respir Res. 2023;24:277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nie J, Zhang P, Liang C, Yu Y, Wang X. ASCL1-mediated ferroptosis resistance enhances the progress of castration-resistant prostate cancer to neurosecretory prostate cancer. Free Radic Biol Med. 2023;205:318–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

1. Sichuan Science and Technology Program (Project No.: 2022YFS0622; 2022YFS0622-A2); 2. Doctoral Research Initiation Fund of Affiliated Hospital of Southwest Medical University (Project No. :22152); 3. Research Project of Southwest Medical University (Project No. : 2021ZKQN062); 4. Luzhou Science and Technology Program (Project No. : 2022-SYF-44).

Author information

Authors and Affiliations

Authors

Contributions

FangFang Zhong: conception and design of the research, acquisition of data, revision of manuscript for important intellectual content; Yan Zeng and Jing Liu: acquisition of data, performing the experiment, drafting the manuscript; Qulian Guo and Ping Wen: analysis and interpretation of data; performing the experiment. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to FangFang Zhong or Ping Wen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All the animal experiments were approved by the Animal Care and Use Committee of the Affiliated Hospital of Southwest Medical University and were conducted in accordance with the NIH Guidelines for the Care and Use of Laboratory Animals. The study is reported in accordance with ARRIVE guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, F., Zeng, Y., Liu, J. et al. PRDX1 depletion predisposes to ferroptosis through inhibiting the cAMP pathway in B-cell acute lymphoblastic leukemia. Cancer Gene Ther (2025). https://doi.org/10.1038/s41417-025-00992-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41417-025-00992-8

Search

Quick links