Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human myelocyte and metamyelocyte-stage neutrophils suppress tumor immunity and promote cancer progression

Abstract

Tumor-infiltrating neutrophils (TINs) are highly heterogeneous and mostly immunosuppressive in the tumor immune microenvironment (TIME). Current biomarkers of TINs and treatment strategies targeting TINs have not yielded optimal responses in patients across cancer types. Here, we separated human and mouse neutrophils into three developmental stages, including promyelocyte (PM), myelocyte & metamyelocyte (MC & MM), and band & segmented (BD & SC) neutrophils. Based on this separation, we observed the predominance of human but not mouse MC & MM-stage neutrophils in bone marrow (BM), which exhibit potent immunosuppressive and tumor-promoting properties. MCs & MMs also occupy the majority of TINs among patients with 17 cancer types. Moreover, through the creation of a NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt (NCG)-Gfi1−/− human immune system (HIS) mouse model, which supports efficient reconstitution of human TIN, we found a significant increase of BM MCs & MMs in tumor-bearing mice. By comparing the single-cell RNA sequencing analysis results of human neutrophils from both BM and tumors, we found that CD63 and Galectin-3 distinguish MC & MM from neutrophil populations in cancer patients. Furthermore, we proposed a strategy with Fms-like tyrosine kinase 3 ligand to specifically induce the trans-differentiation of MCs & MMs into monocytic cells, and trigger tumor control in NCG-Gfi1−/− HIS mice. Thus, our findings establish an essential role of human MC & MM-stage neutrophils in promoting cancer progression, and suggest their potential as targets for developing potential biomarkers and immunotherapies for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of human BM neutrophils.
Fig. 2: MC & MM-stage neutrophils in human BM are long-lived and tumor-promoting.
Fig. 3: MC & MM neutrophils constitute the majority of TINs across tumor types.
Fig. 4: The proportion of MC & MM neutrophils is increased in the BM of cancer patients and tumor-bearing NCG-Gfi1−/− HIS mice.
Fig. 5: CD63 and Galectin-3 distinguish MC & MM from neutrophil populations in cancer patients.
Fig. 6: Flt3L transdifferentiates MC & MM-stage neutrophils into monocytic cells.
Fig. 7: Flt3L trans-differentiation treatment controls tumor growth in NCG-Gfi1−/− HIS model.
Fig. 8: A schematic diagram illustrating dynamics of human MC & MM-stage neutrophils across physiological and tumor conditions.

Similar content being viewed by others

Data availability

This study did not generate new materials. The scRNA-seq and bulk RNA-seq data have been deposited in the Genome Sequence Archive in National Genomics Data Center, China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences that are publicly accessible at https://ngdc.cncb.ac.cn/gsa (GSA: HRA011772, under GSA for Human category). Original code has been deposited at GitHub and is available at https://github.com/yuzu1999/Neutrophils.

References

  1. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Kang, H. et al. Neutrophil-macrophage communication via extracellular vesicle transfer promotes itaconate accumulation and ameliorates cytokine storm syndrome. Cell. Mol. Immunol. 21, 689–706 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Shaul, M. E. & Fridlender, Z. G. Tumour-associated neutrophils in patients with cancer. Nat. Rev. Clin. Oncol. 16, 601–620 (2019).

    Article  PubMed  Google Scholar 

  5. Hedrick, C. C. & Malanchi, I. Neutrophils in cancer: heterogeneous and multifaceted. Nat. Rev. Immunol. 22, 173–187 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, R. et al. Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612, 338–346 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, C. et al. CD300ld on neutrophils is required for tumour-driven immune suppression. Nature 621, 830–839 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Xue, R. et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612, 141–147 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Ng, M. S. F. et al. Deterministic reprogramming of neutrophils within tumors. Science 383, eadf6493 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He, X. Y. et al. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 42, 474–486.e12 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benguigui, M. et al. Interferon-stimulated neutrophils as a predictor of immunotherapy response. Cancer Cell 42, 253–265.e12 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gungabeesoon, J. et al. A neutrophil response linked to tumor control in immunotherapy. Cell 186, 1448–1464.e20 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hirschhorn, D. et al. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell 186, 1432–1447.e17 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, Y. et al. Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell 187, 1422–1439.e24 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Hidalgo, A., Chilvers, E. R., Summers, C. & Koenderman, L. The neutrophil life cycle. Trends Immunol. 40, 584–597 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Dinh, H. Q. et al. Coexpression of CD71 and CD117 identifies an early unipotent neutrophil progenitor population in human bone marrow. Immunity 53, 319–334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwok, I. et al. Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor. Immunity 53, 303–318.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Montaldo, E. et al. Cellular and transcriptional dynamics of human neutrophils at steady state and upon stress. Nat. Immunol. 23, 1470–1483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Hegde, S., Leader, A. M. & Merad, M. MDSC: markers, development, states, and unaddressed complexity. Immunity 54, 875–884 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Silvestre-Roig, C., Hidalgo, A. & Soehnlein, O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 127, 2173–2181 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Ito, R. et al. Efficient differentiation of human neutrophils with recapitulation of emergency granulopoiesis in human G-CSF knockin humanized mice. Cell Rep. 41, 111841 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Zheng, Y. et al. Human neutrophil development and functionality are enabled in a humanized mouse model. Proc. Natl. Acad. Sci. USA 119, e2121077119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Condamine, T. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol. 1, aaf8943 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Calzetti, F. et al. CD66bCD64dimCD115 cells in the human bone marrow represent neutrophil-committed progenitors. Nat. Immunol. 23, 679–691 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Grassi, L. et al. Dynamics of transcription regulation in human bone marrow myeloid differentiation to mature blood neutrophils. Cell Rep. 24, 2784–2794 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, Z. et al. Photoactivatable Aptamer-CRISPR nanodevice enables precise profiling of interferon-gamma release in humanized mice. ACS Nano 18, 3826–3838 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, X. et al. An oncolytic virus delivering tumor-irrelevant bystander T cell epitopes induces anti-tumor immunity and potentiates cancer immunotherapy. Nat. Cancer 5, 1063–1081 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rios-Doria, J., Stevens, C., Maddage, C., Lasky, K. & Koblish, H. K. Characterization of human cancer xenografts in humanized mice. J. Immunother. Cancer 8, e000416 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hock, H. et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18, 109–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Karsunky, H. et al. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat. Genet. 30, 295–300 (2002).

    Article  PubMed  Google Scholar 

  34. Steele, N. G. et al. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat. Cancer 1, 1097–1112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo, W. et al. Resolving the difference between left-sided and right-sided colorectal cancer by single-cell sequencing. JCI Insight 7, e152616 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mehta, H. M. & Corey, S. J. G.-C. S. F. the guardian of granulopoiesis. Semin. Immunol. 54, 101515 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Köffel, R. et al. Monocytic cell differentiation from band-stage neutrophils under inflammatory conditions via MKK6 activation. Blood 124, 2713–2724 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ren, D., Liu, W., Ding, S. & Li, Y. Protocol for generating human immune system mice and hydrodynamic injection to analyze human hematopoiesis in vivo. STAR Protoc. 3, 101217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils. Science 358, eaal5081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Veglia, F. et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569, 73–78 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maas, R. R. et al. The local microenvironment drives activation of neutrophils in human brain tumors. Cell 186, 4546–4566.e27 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, Y. et al. Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate decarboxylase 1. Cell Metab. 35, 1688–1703.e10 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bianchi, A. et al. Cell-autonomous Cxcl1 sustains tolerogenic circuitries and stromal inflammation via neutrophil-derived TNF in pancreatic cancer. Cancer Discov. 13, 1428–1453 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monteran, L. et al. Combining TIGIT blockage with MDSC inhibition hinders breast cancer bone metastasis by activating anti-tumor immunity. Cancer Discov. 14, 1252–1275 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, T. T. et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut 66, 1900–1911 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Gong, Z. et al. Immunosuppressive reprogramming of neutrophils by lung mesenchymal cells promotes breast cancer metastasis. Sci. Immunol. 8, eadd5204 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barry, S. T., Gabrilovich, D. I., Sansom, O. J., Campbell, A. D. & Morton, J. P. Therapeutic targeting of tumour myeloid cells. Nat. Rev. Cancer 23, 216–237 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Aarts, C. E. M. et al. Activated neutrophils exert myeloid-derived suppressor cell activity damaging T cells beyond repair. Blood Adv. 3, 3562–3574 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Perez, C. et al. Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood 136, 199–209 (2020).

    Article  PubMed  Google Scholar 

  50. Skokowa, J., Dale, D. C., Touw, I. P., Zeidler, C. & Welte, K. Severe congenital neutropenias. Nat. Rev. Dis. Prim. 3, 17032 (2017).

    Article  PubMed  Google Scholar 

  51. Fan, Y. et al. Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles. J. Extracell. Vesicles 12, e12352 (2023).

    Article  PubMed  Google Scholar 

  52. Sun, J. et al. CD63(+) cancer-associated fibroblasts confer CDK4/6 inhibitor resistance to breast cancer cells by exosomal miR-20. Cancer Lett. 588, 216747 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Tominaga, N. et al. RPN2-mediated glycosylation of tetraspanin CD63 regulates breast cancer cell malignancy. Mol. Cancer 13, 134 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Miki, Y. et al. Clinico-pathological significance of exosome marker CD63 expression on cancer cells and stromal cells in gastric cancer. PloS One 13, e0202956 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fabre, T. et al. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. Sci. Immunol. 8, eadd8945 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, H. et al. LGALS3 promotes treatment resistance in glioblastoma and is associated with tumor risk and prognosis. Cancer Epidemiol. Biomark. Prev. 28, 760–769 (2019).

    Article  CAS  Google Scholar 

  57. Fan, Y. et al. Galectin-3 cooperates with CD47 to suppress phagocytosis and T-cell immunity in gastric cancer peritoneal metastases. Cancer Res. 83, 3726–3738 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mabbitt, J. et al. Resistance to anti-PD-1/anti-PD-L1: galectin-3 inhibition with GB1211 reverses galectin-3-induced blockade of pembrolizumab and atezolizumab binding to PD-1/PD-L1. Front. Immunol. 14, 1250559 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ruvolo, P. P. et al. LGALS3 is connected to CD74 in a previously unknown protein network that is associated with poor survival in patients with AML. EBioMedicine 44, 126–137 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hsu, B. E. et al. Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis. Cell Rep. 27, 3902–3915.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Sagiv, J. Y. et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 10, 562–573 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Rice, C. M. et al. Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat. Commun. 9, 5099 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mackey, J. B. G., Coffelt, S. B. & Carlin, L. M. Neutrophil maturity in cancer. Front. Immunol. 10, 1912 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goswami, S., Anandhan, S., Raychaudhuri, D. & Sharma, P. Myeloid cell-targeted therapies for solid tumours. Nat. Rev. Immunol. 23, 106–120 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Linde, I. L. et al. Neutrophil-activating therapy for the treatment of cancer. Cancer cell 41, 356–372.e10 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mastio, J. et al. Identification of monocyte-like precursors of granulocytes in cancer as a mechanism for accumulation of PMN-MDSCs. J. Exp. Med. 216, 2150–2169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Lin, X. et al. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol. Cancer 23, 108 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang, H. et al. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol. Cancer 22, 58 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen, S., Zhou, Y., Chen, Y. & Gu, J. J. B. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. J. N. b. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liao, Y., Smyth, G. K. & Shi, W. J. B. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Love, M. I., Huber, W. & Anders, S. J. G. b. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bardou, P., Mariette, J., Escudié, F., Djemiel, C. & Klopp, C. J. B. b. jvenn: an interactive Venn diagram viewer. BMC Bioinforma. 15, 293 (2014).

    Article  Google Scholar 

  76. Wu, J. et al. A single-cell survey of cellular hierarchy in acute myeloid leukemia. J. Hematol. Oncol. 13, 128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Qi, J. et al. Multimodal single-cell characterization of the human granulocyte lineage. bioRxiv https://www.biorxiv.org/content/10.1101/2021.06.12.448210v1 (2021).

  78. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, Q. scTour: a deep learning architecture for robust inference and accurate prediction of cellular dynamics. Genome Biol. 24, 149 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the National Science and Technology Major Program (2023ZD0500400), the Fundamental Research Funds for the Central Universities (2024300408, XJ2024003602), the National Natural Science Foundation of China (32471000, U24A20378, 82373263, 82403835), the National Key R&D Program of China (2023YFC2506400), the Jiangsu Provincial Science and Technology Plan Special Fund (BK20232018) and the Funding of the Major Program of Shenzhen Bay Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

Y. Li and W.L. designed the study. Y. Li, J.W., T.M. and Y. Liang supervised the study and revised the manuscript. W.L. performed the experiments and analyzed the data. with the assistance from T.S., C.L., K.C., Z.Z., Y. Luo, D.H., H.W., Shaorui L., Y.W., Shuang L., H.S., J.L., Y. Liu, D.S., S.D., H.X., L.L., J.X. and Jun X. T.S. and W.L. drafted the manuscript. The clinical samples were provided by S.D., Y. Luo and Y. Liu. The bioinformatic analyses were conducted by C.L. NCG-Gfi1−/− mice were generated by Y. Li, W.L., L.L., J.X., Jun X. and Y. Liang. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Yinming Liang, Taha Merghoub, Jia Wei or Yan Li.

Ethics declarations

Competing interests

Y. Li is currently consulting for GemPharmatech Co. J.W. has received research funding from Leap Therapeutics. T.M. is a consultant for Immunos Therapeutics, Daiichi Sankyo Co, TigaTx, Normunity and Pfizer. T.M. is a cofounder and equity holder of IMVAQ Therapeutics. T.M. has received research funding from Surface Oncology, Kyn Therapeutics, Infinity Pharmaceuticals, Peregrine Pharmaceuticals, Adaptive Biotechnologies, Leap Therapeutics, and Aprea Therapeutics, and currently receives research funding from Bristol-Myers Squibb, Enterome SA, and Realta Life Sciences. T.M. is an inventor on patent applications related to work on oncolytic viral therapy, alpha virus-based vaccine, neo-antigen modeling, CD40, GITR, OX40, PD-1, and CTLA-4. The rest of authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Shi, T., Lu, C. et al. Human myelocyte and metamyelocyte-stage neutrophils suppress tumor immunity and promote cancer progression. Cell Res 35, 588–606 (2025). https://doi.org/10.1038/s41422-025-01145-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41422-025-01145-0

This article is cited by

Search

Quick links