Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular characterization of endosomal self RNA Rmrp-engaged TLR3 dimerization to prime innate activation

Abstract

The pre-dimerization of endosome-localized RNA sensor Toll-like receptor 3 (TLR3) is required for its innate recognition, yet how TLR3 pre-dimers are formed and precisely primed for innate activation remains unclear. Here, we demonstrate that endosome-localized self RNA Rmrp directly binds to TLR3 and induces TLR3 dimerization in the early endosome but does not interact with endosome-localized TLR7, TLR8, TLR9 or cytoplasmic RNA sensor RIG-I under homeostatic conditions. Cryo-EM structure of Rmrp–TLR3 complex reveals a novel lapped conformation of TLR3 dimer engaged by Rmrp, which is distinct from the activation mechanism by dsRNA and the specific structural feature at the 3’-end of Rmrp is critical for its functional interaction with TLR3. Furthermore, K42 residue of TLR3 is essential for binding to Rmrp and subsequent dimerization. Rmrp dissociates from TLR3 following endosomal acidification, generating a matured TLR3 dimer which is primed for innate recognition and activation. Myeloid-cell deficiency of Rmrp reduces TLR3 dimerization and attenuates TLR3-mediated antiviral responses against influenza A both in vitro and in vivo. These findings elucidate the structural mode of self RNA Rmrp-primed TLR3 dimerization and ready for efficient innate recognition on endosomal membrane, extending our knowledge of how membrane-associated TLRs pre-dimerize and suggesting a new function of subcellular localized self RNAs in empowering innate activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Endosomal RNA Rmrp directly binds to innate sensor TLR3.
Fig. 2: Rmrp specifically interacts with full-length TLR3 in early endosome.
Fig. 3: Rmrp is required for TLR3 dimerization.
Fig. 4: Rmrp enables TLR3 innate activation.
Fig. 5: Cryo-EM structure of Rmrp-C–mTLR3 complex.
Fig. 6: K42 residue of TLR3 is essential for binding to Rmrp.
Fig. 7: Rmrp promotes TLR3-initiated antiviral innate response in vitro and in vivo.

Similar content being viewed by others

Data availability

All data are available in the main text or supplementary materials. RNA-seq and iCLIP data are deposited in the Gene Expression Omnibus under accession number GSE159459. The 3D cryo-EM density maps have been deposited into the Electron Microscopy Data Bank under accession numbers EMD-30624, EMD-30626. The coordinates have been deposited into the Protein Data Bank under accession numbers 7DA7, 7DAS.

References

  1. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Zinngrebe, J. et al. LUBAC deficiency perturbs TLR3 signaling to cause immunodeficiency and autoinflammation. J. Exp. Med. 213, 2671–2689 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cao, X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 16, 35–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, J. & Cao, X. RBP-RNA interactions in the control of autoimmunity and autoinflammation. Cell Res. 33, 97–115 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu, Z. et al. The RNA-binding E3 ligase MKRN2 selectively disrupts Il6 translation to restrain inflammation. Nat. Immunol. 26, 1036–1047 (2025).

  6. Stok, J. E., Vega Quiroz, M. E. & van der Veen, A. G. Self RNA sensing by RIG-I-like receptors in viral infection and sterile inflammation. J. Immunol. 205, 883–891 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Jiang, M. et al. Self-recognition of an inducible host lncRNA by RIG-I feedback restricts innate immune response. Cell 173, 906–919.e13 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, P. et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344, 310–313 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, Z. et al. Promotion of TLR7-MyD88-dependent inflammation and autoimmunity in mice through stem-loop changes in Lnc-Atg16l1. Nat. Commun. 15, 10224 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Z., Zou, J. & Chen, X. In response to precision medicine: current subcellular targeting strategies for cancer therapy. Adv. Mater. 35, e2209529 (2023).

    Article  PubMed  Google Scholar 

  11. Miyake, K. et al. Mechanisms controlling nucleic acid-sensing Toll-like receptors. Int. Immunol. 30, 43–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Gavin, A. L. et al. Cleavage of DNA and RNA by PLD3 and PLD4 limits autoinflammatory triggering by multiple sensors. Nat. Commun. 12, 5874 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, Y. et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell 30, 243–256 (2016).

    Article  PubMed  Google Scholar 

  14. Kawai, T. & Akira, S. Toll-like receptor and RIG-I-like receptor signaling. Ann. N. Y. Acad. Sci. 1143, 1–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Aslaksen, S. et al. Identification and characterization of rare toll-like receptor 3 variants in patients with autoimmune Addison’s disease. J. Transl. Autoimmun. 1, 100005 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cavassani, K. A. et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med. 205, 2609–2621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bernard, J. J. et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat. Med. 18, 1286–1290 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Cattaneo, A. et al. Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling. Proc. Natl. Acad. Sci. USA 109, 9053–9058 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choe, J., Kelker, M. S. & Wilson, I. A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309, 581–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Z. et al. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45, 737–748 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Tanji, H., Ohto, U., Shibata, T., Miyake, K. & Shimizu, T. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science 339, 1426–1429 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Ohto, U. et al. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520, 702–705 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, L. et al. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320, 379–381 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin, M. S. et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Kanno, A. et al. Essential role for Toll-like receptor 7 (TLR7)-unique cysteines in an intramolecular disulfide bond, proteolytic cleavage and RNA sensing. Int. Immunol. 25, 413–422 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Y., Liu, L., Davies, D. R. & Segal, D. M. Dimerization of Toll-like receptor 3 (TLR3) is required for ligand binding. J. Biol. Chem. 285, 36836–36841 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Latz, E. et al. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat. Immunol. 8, 772–779 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Asami, J. & Shimizu, T. Structural and functional understanding of the toll-like receptors. Protein Sci. 30, 761–772 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Acharya, D. et al. Actin cytoskeleton remodeling primes RIG-I-like receptor activation. Cell 185, 3588–3602.e21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ridanpaa, M. et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104, 195–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Toscano, F. et al. Cleaved/associated TLR3 represents the primary form of the signaling receptor. J. Immunol. 190, 764–773 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Rosenbluh, J. et al. RMRP is a non-coding RNA essential for early murine development. PLoS One 6, e26270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leonard, J. N. et al. The TLR3 signaling complex forms by cooperative receptor dimerization. Proc. Natl. Acad. Sci. USA 105, 258–263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bell, J. K. et al. The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc. Natl. Acad. Sci. USA 102, 10976–10980 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sakaniwa, K. et al. TLR3 forms a laterally aligned multimeric complex along double-stranded RNA for efficient signal transduction. Nat. Commun. 14, 164 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lan, P. et al. Structural insight into precursor ribosomal RNA processing by ribonuclease MRP. Science 369, 656–663 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Perederina, A. et al. Cryo-EM structure of catalytic ribonucleoprotein complex RNase MRP. Nat. Commun. 11, 3474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lim, C. S. et al. TLR3 forms a highly organized cluster when bound to a poly(I:C) RNA ligand. Nat. Commun. 13, 6876 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohto, U. et al. Toll-like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation. Immunity 48, 649–658.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Le Goffic, R. et al. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2, e53 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Jain, S. et al. Modulation of translational decoding by m(6)A modification of mRNA. Nat. Commun. 14, 4784 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sekulski, K., Cruz, V. E., Weirich, C. S. & Erzberger, J. P. rRNA methylation by Spb1 regulates the GTPase activity of Nog2 during 60S ribosomal subunit assembly. Nat. Commun. 14, 1207 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abbassi, N. E. et al. Cryo-EM structures of the human Elongator complex at work. Nat. Commun. 15, 4094 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mariani, A., Bonfio, C., Johnson, C. M. & Sutherland, J. D. pH-Driven RNA Strand Separation under Prebiotically Plausible Conditions. Biochemistry 57, 6382–6386 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Botos, I., Liu, L., Wang, Y., Segal, D. M. & Davies, D. R. The toll-like receptor 3:dsRNA signaling complex. Biochim. Biophys. Acta 1789, 667–674 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ishida, H. et al. Cryo-EM structures of Toll-like receptors in complex with UNC93B1. Nat. Struct. Mol. Biol. 28, 173–180 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Fu, J., Schroder, K. & Wu, H. Mechanistic insights from inflammasome structures. Nat. Rev. Immunol. 24, 518–535 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hermanns, P. et al. Consequences of mutations in the non-coding RMRP RNA in cartilage-hair hypoplasia. Hum. Mol. Genet. 14, 3723–3740 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Vakkilainen, S. et al. A wide spectrum of autoimmune manifestations and other symptoms suggesting immune dysregulation in patients with cartilage-hair hypoplasia. Front. Immunol. 9, 2468 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Goldfarb, K. C. & Cech, T. R. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing. Genes Dev. 31, 59–71 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gill, T., Cai, T., Aulds, J., Wierzbicki, S. & Schmitt, M. E. RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation. Mol. Cell Biol. 24, 945–953 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rheinbay, E. et al. Recurrent and functional regulatory mutations in breast cancer. Nature 547, 55–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yin, H. et al. M6A RNA methylation-mediated RMRP stability renders proliferation and progression of non-small cell lung cancer through regulating TGFBR1/SMAD2/SMAD3 pathway. Cell Death Differ. 30, 605–617 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Lyu, Y., Wang, Y., Ding, H. & Li, P. Hypoxia-induced m6A demethylase ALKBH5 promotes ovarian cancer tumorigenicity by decreasing methylation of the lncRNA RMRP. Am. J. Cancer Res. 13, 4179–4191 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Murray, L. A. et al. Deleterious role of TLR3 during hyperoxia-induced acute lung injury. Am. J. Respir. Crit. Care Med. 178, 1227–1237 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Vakkilainen, S., Taskinen, M., Klemetti, P., Pukkala, E. & Makitie, O. A 30-year prospective follow-up study reveals risk factors for early death in cartilage-hair hypoplasia. Front. Immunol. 10, 1581 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tavora, B. et al. Tumoural activation of TLR3-SLIT2 axis in endothelium drives metastasis. Nature 586, 299–304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  64. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  69. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Quan Wang and Yan Gao for technical assistance. This work was supported by grants from the National Natural Science Foundation of China (82388201) and CAMS Innovation Fund for Medical Sciences (2024-I2M-ZD-005, 2021-I2M-1-017).

Author information

Authors and Affiliations

Authors

Contributions

X.C. designed and supervised the study. Shikun Z., B.L., L.L., D.G., D.Z., F.L., X.Y., H.Q. performed the experiments. L.L. generated Rmrpfl/fl mice. D.K. and Shuyang Z. provided reagents and helpful discussion. Shikun Z., B.L., Z.R. and X.C. analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Zihe Rao or Xuetao Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Li, B., Liu, L. et al. Molecular characterization of endosomal self RNA Rmrp-engaged TLR3 dimerization to prime innate activation. Cell Res 35, 824–839 (2025). https://doi.org/10.1038/s41422-025-01178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41422-025-01178-5

This article is cited by

Search

Quick links