Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mitochondrial double-stranded RNA drives aging-associated cognitive decline

Abstract

Aging is the primary cause of cognitive decline. Despite extensive study, the molecular mechanisms driving aging-associated cognitive decline remain unclear. Here, we describe a proteostasis-independent function of SEC61A1 and its involvement in aging-associated cognitive decline. SEC61A1 regulates ER–mitochondria contact sites, affecting mitochondrial DNA and RNA synthesis and subsequently leading to changes in innate immune signaling mediated by mitochondrial double-stranded RNA (mt-dsRNA). This pathway is activated in aged wild-type mice, Alzheimer’s disease patients, and 5×FAD mice. Tissue-specific overexpression of Sec61a1 in the mouse cortex (Sec61a1Tg) is sufficient to induce cognitive decline without affecting motor activity. Knockdown of Sec61a1 or Mavs ablates mt-dsRNA-mediated innate immune signaling and alleviates cognitive decline in naturally aging wild-type mice. These results reveal a molecular mechanism of aging- and disease-associated cognitive decline and provide a potential therapeutic tool for intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SEC61A1 overexpression triggers an inflammatory response through RNA-sensing immune signaling.
Fig. 2: mt-dsRNA levels are upregulated by SEC61A1 overexpression.
Fig. 3: SEC61A1 overexpression promotes formation of ERMCSs, leading to upregulation of mtDNA synthesis and transcription.
Fig. 4: Sec61a1 and dsRNA levels are upregulated in the cerebral cortex of aged mice.
Fig. 5: Overexpression of Sec61a1 in the cerebral cortex accelerates cognitive decline in mice.
Fig. 6: Neuron-specific knockdown of Sec61a1 improves cognition in 20-month-old WT mice.

References

  1. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    Article  PubMed  Google Scholar 

  3. Hsu, A. L., Murphy, C. T. & Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Westerheide, S. D., Anckar, J., Stevens, S. M. Jr, Sistonen, L. & Morimoto, R. I. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323, 1063–1066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dabsan, S., Twito, G., Biadsy, S. & Igbaria, A. Less is better: various means to reduce protein load in the endoplasmic reticulum. FEBS J. 292, 976–989 (2025).

    Article  CAS  PubMed  Google Scholar 

  6. Bernales, S., Papa, F. R. & Walter, P. Intracellular signaling by the unfolded protein response. Annu. Rev. Cell Dev. Biol. 22, 487–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Matai, L. et al. Dietary restriction improves proteostasis and increases life span through endoplasmic reticulum hormesis. Proc. Natl. Acad. Sci. USA 116, 17383–17392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sadighi Akha, A. A. et al. Heightened induction of proapoptotic signals in response to endoplasmic reticulum stress in primary fibroblasts from a mouse model of longevity. J. Biol. Chem. 286, 30344–30351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodall, E. F. et al. Age-associated mRNA and miRNA expression changes in the blood-brain barrier. Int. J. Mol. Sci. 20, 3097 (2019).

  10. Berchtold, N. C. et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc. Natl. Acad. Sci. USA 105, 15605–15610 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hartmann, E. et al. Evolutionary conservation of components of the protein translocation complex. Nature 367, 654–657 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Romisch, K. A case for Sec61 channel involvement in ERAD. Trends Biochem. Sci. 42, 171–179 (2017).

    Article  PubMed  Google Scholar 

  13. Wei, X. et al. Proteomic screens of SEL1L-HRD1 ER-associated degradation substrates reveal its role in glycosylphosphatidylinositol-anchored protein biogenesis. Nat. Commun. 15, 659 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 23, 286–301 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Dhir, A. et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560, 238–242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tigano, M., Vargas, D. C., Tremblay-Belzile, S., Fu, Y. & Sfeir, A. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature 591, 477–481 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Bonekamp, N. A. et al. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature 588, 712–716 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. López-Polo, V. et al. Release of mitochondrial dsRNA into the cytosol is a key driver of the inflammatory phenotype of senescent cells. Nat. Commun. 15, 7378 (2024).

  19. Wang, G. et al. PNPASE regulates RNA import into mitochondria. Cell 142, 456–467 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, P. C. et al. ANT2 functions as a translocon for mitochondrial cross-membrane translocation of RNAs. Cell Res. 34, 504–521 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khawaja, A. et al. Distinct pre-initiation steps in human mitochondrial translation. Nat. Commun. 11, 2932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh, V. et al. Structural basis of LRPPRC-SLIRP-dependent translation by the mitoribosome. Nat. Struct. Mol. Biol. 31, 1838–1847 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Obara, C. J. et al. Motion of VAPB molecules reveals ER-mitochondria contact site subdomains. Nature 626, 169–176 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ito, N. et al. MITOL regulates phosphatidic acid-binding activity of RMDN3/PTPIP51. J. Biochem. 171, 529–541 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Qin, J. et al. ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation. Nat. Commun. 11, 4471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lewis, S. C., Uchiyama, L. F. & Nunnari, J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549 (2016).

  27. Erdmann, F. et al. Interaction of calmodulin with Sec61alpha limits Ca2+ leakage from the endoplasmic reticulum. EMBO J. 30, 17–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. de Juan-Sanz, J. et al. Axonal endoplasmic reticulum Ca(2+) content controls release probability in CNS nerve terminals. Neuron 93, 867–881.e6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhu, X. et al. Cold-inducible RNA binding protein alleviates iron overload-induced neural ferroptosis under perinatal hypoxia insult. Cell Death Differ. 31, 524–539 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Becher, B., Spath, S. & Goverman, J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 17, 49–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Patel, H. et al. Transcriptomic analysis of probable asymptomatic and symptomatic alzheimer brains. Brain Behav. Immun. 80, 644–656 (2019).

    Article  PubMed  Google Scholar 

  32. Xu, L., Wang, X. & Tong, C. Endoplasmic reticulum-mitochondria contact sites and neurodegeneration. Front. Cell Dev. Biol. 8, 428 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hedskog, L. et al. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc. Natl. Acad. Sci. USA 110, 7916–7921 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kraushar, M. L. et al. Protein synthesis in the developing neocortex at near-atomic resolution reveals Ebp1-mediated neuronal proteostasis at the 60S tunnel exit. Mol. Cell 81, 304–322.e16 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Singh, R., Kaur, N., Choubey, V., Dhingra, N. & Kaur, T. Endoplasmic reticulum stress and its role in various neurodegenerative diseases. Brain Res. 1826, 148742 (2024).

  36. Elia, F., Yadhanapudi, L., Tretter, T. & Römisch, K. The N-terminus of Sec61p plays key roles in ER protein import and ERAD. PloS One 14, e0215950 (2019).

  37. Area-Gomez, E. et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106–4123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paillusson, S. et al. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca homeostasis and mitochondrial ATP production. Acta Neuropathol. 134, 129–149 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guardia-Laguarta, C. et al. α-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 34, 249–259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anagnostou, G. et al. Vesicle associated membrane protein B (VAPB) is decreased in ALS spinal cord. Neurobiol. Aging 31, 969–985 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Stoica, R. et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, W., Sun, H. S., Wang, X., Dumont, A. S. & Liu, Q. Cellular senescence, DNA damage, and neuroinflammation in the aging brain. Trends Neurosci. 47, 461–474 (2024).

    Article  PubMed  Google Scholar 

  44. Gulen, M. F. et al. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 620, 374–380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, J. et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366, 1531–1536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu, X. et al. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 186, 287–304.e26 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Miller, K. N. et al. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 184, 5506–5526 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hooftman, A. et al. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. Nature 615, 490–498 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, S. et al. Mitochondrial double-stranded RNAs govern the stress response in chondrocytes to promote osteoarthritis development. Cell Rep. 40, 111178 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Yoon, J. et al. Mitochondrial double-stranded RNAs as a pivotal mediator in the pathogenesis of Sjögren’s syndrome. Mol. Ther. Nucleic Acids 30, 257–269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Csordas, G., Weaver, D. & Hajnoczky, G. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28, 523–540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Basu, U., Bostwick, A. M., Das, K., Dittenhafer-Reed, K. E. & Patel, S. S. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J. Biol. Chem. 295, 18406–18425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fernandez-Silva, P., Enriquez, J. A. & Montoya, J. Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol. 88, 41–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Ben-Zvi, A., Miller, E. A. & Morimoto, R. I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl. Acad. Sci. USA 106, 14914–14919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. J. The central role of DNA damage in the ageing process. Nature 592, 695–703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

    Article  PubMed  Google Scholar 

  59. Baker, D. J. et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dieterich, D. C. et al. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat. Protoc. 2, 532–540 (2007).

    Article  PubMed  Google Scholar 

  62. Huang, J., Liu, P. & Wang, G. Regulation of mitochondrion-associated cytosolic ribosomes by mammalian mitochondrial ribonuclease T2 (RNASET2). J. Biol. Chem. 293, 19633–19644 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Williamson, C. D., Wong, D. S., Bozidis, P., Zhang, A. & Colberg-Poley, A. M. Isolation of endoplasmic reticulum, mitochondria, and mitochondria-associated membrane and detergent resistant membrane fractions from transfected cells and from human cytomegalovirus-infected primary fibroblasts. Curr. Protoc. Cell Biol. 68, 3.27.21–23.27.33 (2015).

    Article  Google Scholar 

  64. Li, M. et al. AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Res. 34, 683–706 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ly, K., Reid, S. J. & Snell, R. G. Rapid RNA analysis of individual Caenorhabditis elegans. MethodsX 2, 59–63 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Miller, K. G. et al. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc. Natl. Acad. Sci. USA 93, 12593–12598 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Wenxian Liu (Xiamen University, China), Dr. Xin Wang (Xiamen University, China) and Dr. Chensong Zhang (Xiamen University, China) for reagents. We thank Dr. Szecheng Lo (Chang Gung University, Taiwan), Dr. Shuyong Lin (Xiamen University, China), Dr. Xiaofen Chen (Xiamen University, China) and Dr. Shijin Zheng (Xiamen University, China) for helpful suggestions on the study. We thank Dr. Yalin Zhang for help with mouse brain stereotactic injection of AAV; Dr. Luming Yao, Dr. Caiming Wu and Wei Han (Xiamen University, China) for their help with electron microscopy; Xiang You and Qingfeng Liu (Xiamen University, China) for their help with confocal fluorescence microscopy; and Dr. Changchuan Xie and Cixiong Zhang (Xiamen University, China) for their help with mass spectrometry. This research was financed by the National Natural Science Foundation of China (32450418, 91949103, 32071159) and the Priority Research Program of the Ministry of Science and Technology of China (2017YFA0504600).

Author information

Authors and Affiliations

Authors

Contributions

G.W., L.X.Z., and Z.R.Z. initiated and supervised the project. G.W., L.X.Z., Z.R.Z., X.L., and H.D.L. conceived the study and designed the experiments. Y.J.H., G.K.Z., C.L.Z., J.T.L., and Y.Y. performed lifespan analyses in C. elegans. P.C.W., S.P.W., J.Z., and X.J.C. performed western blot assays. X.Y.L. performed snRNA-seq analyses and prepared schematic figures. K.D. provided clinical serum samples from Alzheimer’s disease patients and healthy controls. J.H.S. and Z.Z.Z. analyzed RNA-seq data and predicted SEC61A1 structure using web-based tools. Z.B.W. performed quantification and statistical analysis of immunofluorescence, electron microscopy, and western blot images. R.J.L. performed transmission electron microscopy. Z.S. performed dot blot assays for dsRNA. J.X.X. performed ELISA assays. S.Y.C. performed immunofluorescence assay. C.S.L. advised on behavioral experiments in mice. Z.H.W. performed stereotaxic brain injections. G.W. drafted the manuscript. Z.R.Z. revised and validated the final version. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Zhirong Zhang or Geng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics statement

This study was approved by the Institutional Ethics Committees of the participating hospitals in accordance with the Declaration of Helsinki (Approval No. XDYX202410K59, Xiamen University Medical Ethics Committee). Written informed consent was obtained from the participants or their next of kin.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, X., Luo, H. et al. Mitochondrial double-stranded RNA drives aging-associated cognitive decline. Cell Res (2026). https://doi.org/10.1038/s41422-026-01224-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41422-026-01224-w

Search

Quick links