Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human dendritic cell-specific ICAM-3-grabbing non-integrin downstream signaling alleviates renal fibrosis via Raf-1 activation in systemic candidiasis

Abstract

We generated a human dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) transgenic mouse in which renal tubular epithelial cells expressed DC-SIGN. The transgenic mice were infected with Candida albicans intravenously to study how DC-SIGN expression affected the pathogenesis of systemic candidiasis. We discovered that, while C. albicans infection induced renal fibrosis in both transgenic and littermate control mice, the transgenic mice had significantly lower levels of Acta2, Col1a2, Col3a1, and Col4a1 mRNA transcripts compared to the controls. KIM-1, an emerging biomarker for kidney injury, along with Tnf, Il6, and Tgfb1 transcripts, were lower in infected transgenic mice, and yet, the levels of Il10 remained comparable to the controls. While renal CD45+ infiltrating cells were the source of Tnf, Il6, and Il10, LTL+ renal proximal tubular epithelial cells were TGF-β1 producers in both infected transgenic and littermate controls. DC-SIGN-expressing tubular epithelial cells produced less TGF-β1 in response to C. albicans infection. In vivo experiments demonstrated that renal proximal tubular epithelial cell production of TGF-β1 was key to C. albicans-induced renal fibrosis and injury. Infection of transgenic mice induced a marked increase of phosphorylated Raf-1 and p38 in the kidney. However, ERK1/2 and JNK phosphorylation was more pronounced in the infected-littermate controls. Interestingly, treating the infected transgenic mice with a Raf-1 inhibitor increased the levels of the Tgfb1, Kim1, and Acta2 transcripts. These results indicate that DC-SIGN signaling, through activation of Raf-1 and p38 and suppression of JNK and ERK1/2 phosphorylation, reduces TGF-β1 production and C. albicans-induced renal fibrosis. Our study reveals for the first time the effect of DC-SIGN expression on C. albicans-induced renal fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pfaller, M. A. & Diekema, D. J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133–163 (2007).

    Article  CAS  Google Scholar 

  2. Lionakis, M. S., Lim, J. K., Lee, C. C. & Murphy, P. M. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J. Innate Immun. 3, 180–199 (2011).

    Article  CAS  Google Scholar 

  3. Geijtenbeek, T. B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 (2000).

    Article  CAS  Google Scholar 

  4. Engering, A., Van Vliet, S. J., Geijtenbeek, T. B. & Van Kooyk, Y. Subset of DC-SIGN(+) dendritic cells in human blood transmits HIV-1 to T lymphocytes. Blood 100, 1780–1786 (2002).

    Article  CAS  Google Scholar 

  5. Soilleux, E. J. et al. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J. Leukoc. Biol. 71, 445–457 (2002).

    CAS  PubMed  Google Scholar 

  6. Granelli-Piperno, A. et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J. Immunol. 175, 4265–4273 (2005).

    Article  CAS  Google Scholar 

  7. Mukhtar, M. et al. Primary isolated human brain microvascular endothelial cells express diverse HIV/SIV-associated chemokine coreceptors and DC-SIGN and L-SIGN. Virology 297, 78–88 (2002).

    Article  CAS  Google Scholar 

  8. Lai, W. K. et al. Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: a role for capturing hepatitis C virus particles. Am. J. Pathol. 169, 200–208 (2006).

    Article  CAS  Google Scholar 

  9. Zeng, J. Q. et al. Enterocyte dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin expression in inflammatory bowel disease. World J. Gastroenterol. 21, 187–195 (2015).

    Article  CAS  Google Scholar 

  10. Wu, J. et al. Role of DC-SIGN in Helicobacter pylori infection of gastrointestinal cells. Front. Biosci. (Landmark Ed.) 19, 825–834 (2014).

    Article  Google Scholar 

  11. Cai, M. et al. DC-SIGN expression on podocytes and its role in inflammatory immune response of lupus nephritis. Clin. Exp. Immunol. 183, 317–325 (2016).

    Article  CAS  Google Scholar 

  12. Zhou, T. et al. Effects of DC-SIGN expression on renal tubulointerstitial fibrosis in nephritis. Front. Biosci. (Landmark Ed.) 14, 2935–2943 (2009).

    Article  CAS  Google Scholar 

  13. Nagaoka, K. et al. Association of SIGNR1 with TLR4-MD-2 enhances signal transduction by recognition of LPS in gram-negative bacteria. Int. Immunol. 17, 827–836 (2005).

    Article  CAS  Google Scholar 

  14. Appelmelk, B. J. et al. Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol. 170, 1635–1639 (2003).

    Article  CAS  Google Scholar 

  15. Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  Google Scholar 

  16. Tailleux, L. et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197, 121–127 (2003).

    Article  CAS  Google Scholar 

  17. Cambi, A. et al. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol. 33, 532–538 (2003).

    Article  CAS  Google Scholar 

  18. Schaefer, M. et al. Decreased pathology and prolonged survival of human DC-SIGN transgenic mice during mycobacterial infection. J. Immunol. 180, 6836–6845 (2008).

    Article  CAS  Google Scholar 

  19. Lugo-Villarino, G. et al. The C-type lectin receptor DC-SIGN has an anti-inflammatory role in human M(IL-4) macrophages in response to Mycobacterium tuberculosis. Front. Immunol. 9, 1123 (2018).

    Article  Google Scholar 

  20. Gringhuis, S. I. et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26, 605–616 (2007).

    Article  CAS  Google Scholar 

  21. Falke, L. L., Gholizadeh, S., Goldschmeding, R., Kok, R. J. & Nguyen, T. Q. Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat. Rev. Nephrol. 11, 233–244 (2015).

    Article  CAS  Google Scholar 

  22. Duffield, J. S., Lupher, M., Thannickal, V. J. & Wynn, T. A. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 8, 241–276 (2013).

    Article  CAS  Google Scholar 

  23. Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. Inflammatory processes in renal fibrosis. Nat. Rev. Nephrol. 10, 493–503 (2014).

    Article  CAS  Google Scholar 

  24. Saito, F. et al. Role of interleukin-6 in bleomycin-induced lung inflammatory changes in mice. Am. J. Respir. Cell Mol. Biol. 38, 566–571 (2008).

    Article  CAS  Google Scholar 

  25. Chen, K., Wei, Y., Sharp, G. C. & Braley-Mullen, H. Decreasing TNF-alpha results in less fibrosis and earlier resolution of granulomatous experimental autoimmune thyroiditis. J. Leukoc. Biol. 81, 306–314 (2007).

    Article  CAS  Google Scholar 

  26. Meng, X. M., Tang, P. M., Li, J. & Lan, H. Y. TGF-beta/Smad signaling in renal fibrosis. Front. Physiol. 6, 82 (2015).

    Article  Google Scholar 

  27. Yamamoto, T. et al. Expression of transforming growth factor-beta isoforms in human glomerular diseases. Kidney Int. 49, 461–469 (1996).

    Article  CAS  Google Scholar 

  28. Hsiao, Y. C. et al. Coat color-tagged green mouse with EGFP expressed from the RNA polymerase II promoter. Genesis 39, 122–129 (2004).

    Article  CAS  Google Scholar 

  29. Wu, C. F. et al. Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am. J. Pathol. 182, 118–131 (2013).

    Article  CAS  Google Scholar 

  30. Boor, P. & Floege, J. The renal (myo-)fibroblast: a heterogeneous group of cells. Nephrol. Dial. Transplant. 27, 3027–3036 (2012).

    Article  Google Scholar 

  31. Lim, A. I., Tang, S. C., Lai, K. N. & Leung, J. C. Kidney injury molecule-1: more than just an injury marker of tubular epithelial cells? J. Cell. Physiol. 228, 917–924 (2013).

    Article  CAS  Google Scholar 

  32. Jin, Y. et al. Interleukin-10 deficiency aggravates kidney inflammation and fibrosis in the unilateral ureteral obstruction mouse model. Lab. Invest. 93, 801–811 (2013).

    Article  CAS  Google Scholar 

  33. Ma, F. Y. et al. A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis. J. Am. Soc. Nephrol. 18, 472–484 (2007).

    Article  CAS  Google Scholar 

  34. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med 16, 535–543 (2010). 1p following 143.

    Article  CAS  Google Scholar 

  35. Stambe, C. et al. The role of p38alpha mitogen-activated protein kinase activation in renal fibrosis. J. Am. Soc. Nephrol. 15, 370–379 (2004).

    Article  CAS  Google Scholar 

  36. Yen, Y. T. et al. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J. Virol. 80, 2684–2693 (2006).

    Article  CAS  Google Scholar 

  37. Cox, N., Pilling, D. & Gomer, R. H. DC-SIGN activation mediates the differential effects of SAP and CRP on the innate immune system and inhibits fibrosis in mice. Proc. Natl. Acad. Sci. USA 112, 8385–8390 (2015).

    Article  CAS  Google Scholar 

  38. Garcia-Vallejo, J. J. & van Kooyk, Y. The physiological role of DC-SIGN: a tale of mice and men. Trends Immunol. 34, 482–486 (2013).

    Article  CAS  Google Scholar 

  39. Li, B. et al. Inflammation drives renal scarring in experimental pyelonephritis. Am. J. Physiol. Ren. Physiol. 312, F43–F53 (2017).

    Article  CAS  Google Scholar 

  40. Fanton d’Andon, M. et al. Leptospira Interrogans induces fibrosis in the mouse kidney through iNOS-dependent, TLR- and NLR-independent signaling pathways. PLoS Negl. Trop. Dis. 8, e2664 (2014).

    Article  Google Scholar 

  41. Song, Z., Papanicolaou, N., Dean, S. & Bing, Z. Localized candidiasis in kidney presented as a mass mimicking renal cell carcinoma. Case Rep. Infect. Dis. 2012, 953590 (2012).

    PubMed  PubMed Central  Google Scholar 

  42. Ogura, M. et al. Fungal granulomatous interstitial nephritis presenting as acute kidney injury diagnosed by renal histology including PCR assay. Clin. Kidney J. 5, 459–462 (2012).

    Article  CAS  Google Scholar 

  43. Eardley, K. S. et al. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int. 74, 495–504 (2008).

    Article  Google Scholar 

  44. Huen, S. C., Moeckel, G. W. & Cantley, L. G. Macrophage-specific deletion of transforming growth factor-beta1 does not prevent renal fibrosis after severe ischemia-reperfusion or obstructive injury. Am. J. Physiol. Ren. Physiol. 305, F477–F484 (2013).

    Article  CAS  Google Scholar 

  45. Diwakar, R., Pearson, A. L., Colville-Nash, P., Brunskill, N. J. & Dockrell, M. E. The role played by endocytosis in albumin-induced secretion of TGF-beta1 by proximal tubular epithelial cells. Am. J. Physiol. Ren. Physiol. 292, F1464–F1470 (2007).

    Article  CAS  Google Scholar 

  46. Sharma, K., Jin, Y., Guo, J. & Ziyadeh, F. N. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 45, 522–530 (1996).

    Article  CAS  Google Scholar 

  47. Rice, L. M. et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Invest. 125, 2795–2807 (2015).

    Article  Google Scholar 

  48. Gringhuis, S. I., den Dunnen, J., Litjens, M., van der Vlist, M. & Geijtenbeek, T. B. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat. Immunol. 10, 1081–1088 (2009).

    Article  CAS  Google Scholar 

  49. Gringhuis, S. I. et al. HIV-1 blocks the signaling adaptor MAVS to evade antiviral host defense after sensing of abortive HIV-1 RNA by the host helicase DDX3. Nat. Immunol. 18, 225–235 (2017).

    Article  CAS  Google Scholar 

  50. Cheng, X. et al. Both ERK/MAPK and TGF-Beta/Smad signaling pathways play a role in the kidney fibrosis of diabetic mice accelerated by blood glucose fluctuation. J. Diabetes Res. 2013, 463740 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the gift of the pcDNA3.1 plasmid containing hDC-SIGN cDNA from Dan R. Littman (New York University, School of Medicine, New York, NY, USA). We thank Dr. Ting-Fen Tsai (National Yang-Ming University, Taipei, Taiwan) for the mammalian expression vector pK14TyrPolII-IN2B. The services provided by the Imaging Core, the Flow Cytometric Analyzing and Sorting Core at the Second Core, and the Third Core Laboratories of the Department of Medical Research, National Taiwan University Hospital are gratefully acknowledged. The authors also thank the Laboratory Animal Center of National Taiwan University College of Medicine for providing histopathological analysis. The work was supported by research grants 103-2321-B-002-016 and 104-2321-B-002-049 from the Ministry of Science and Technology (MOST, https://www.most.gov.tw/) and Thematic Research Program AS-105-TP-B08-3 from Academia Sinica (https://www.sinica.edu.tw/index.shtml) to B.A.W.-H.

Author information

Authors and Affiliations

Authors

Contributions

W.-Y.C. contributed to the conception and design of the work; was devoted to the acquisition, analysis, and interpretation of data; and drafted and finalized the submitted manuscript. S.-Y.W. and T.-C.L. contributed to the design of the work and created materials that were required for the work. S.-L.L. contributed to the conception of the work and provided reagents required for the work. B.A.W.-H. contributed to the conception and design of the work, was devoted to the interpretation of data, drafted and finalized the manuscript, and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Betty A. Wu-Hsieh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WY., Wu, SY., Lin, TC. et al. Human dendritic cell-specific ICAM-3-grabbing non-integrin downstream signaling alleviates renal fibrosis via Raf-1 activation in systemic candidiasis. Cell Mol Immunol 16, 288–301 (2019). https://doi.org/10.1038/s41423-018-0161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-018-0161-5

Keywords

Search

Quick links