Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The function and clinical application of extracellular vesicles in innate immune regulation

Abstract

The innate immune system plays a crucial role in the host defense against viral and microbial infection. Exosomes constitute a subset of extracellular vesicles (EVs) that can be released by almost all cell types. Owing to their capacity to shield the payload from degradation and to evade recognition and subsequent removal by the immune system, exosomes efficiently transport functional components to recipient cells. Accumulating evidence has recently shown that exosomes derived from tumor cells, host cells and even bacteria and parasites mediate the communication between the invader and innate immune cells and thus play an irreplaceable function in the dissemination of pathogens and donor cell-derived molecules, modulating the innate immune responses of the host. In this review, we describe the current understanding of EVs (mainly focusing on exosomes) and summarize and discuss their crucial roles in determining innate immune responses. Additionally, we discuss the potential of using exosomes as biomarkers and cancer vaccines in diagnostic and therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thery, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Simons, M. & Raposo, G. Exosomes–vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Pegtel, D. M. & Gould, S. J. Exosomes. Annu Rev. Biochem 88, 487–514 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Daaboul, G. G. et al. Digital detection of exosomes by interferometric imaging. Sci. Rep. 6, 37246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, R. et al. Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest 126, 1152–1162 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Hegmans, J. P. J. J. et al. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am. J. Pathol. 164, 1807–1815 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bard, M. P. et al. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am. J. Respir. Cell Mol. Biol. 31, 114–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Skotland, T., Sandvig, K. & Llorente, A. Lipids in exosomes: current knowledge and the way forward. Prog. Lipid Res 66, 30–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Llorente, A. et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys. Acta 1831, 1302–1309 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Thakur, B. K. et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24, 766–769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Balaj, L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Kahlert, C. et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pisitkun, T., Shen, R. F. & Knepper, M. A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl Acad. Sci. USA 101, 13368–13373 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Admyre, C. et al. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179, 1969–1978 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Michael, A. et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral. Dis. 16, 34–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Hiemstra, T. F. et al. Human urinary exosomes as innate immune effectors. J. Am. Soc. Nephrol. 25, 2017–2027 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zijlstra, C. & Stoorvogel, W. Prostasomes as a source of diagnostic biomarkers for prostate cancer. J. Clin. Invest 126, 1144–1151 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Trams, E. G. et al. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys. Acta 645, 63–70 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Fang, Y. et al. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. 5, e158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Booth, A. M. et al. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol. 172, 923–35. (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Denzer, K. et al. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 113(Pt 19), 3365–3374 (2000).

    CAS  PubMed  Google Scholar 

  25. Keller, S. et al. Exosomes: from biogenesis and secretion to biological function. Immunol. Lett. 107, 102–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Deneka, M. et al. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J. Cell Biol. 177, 329–341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Casado, S., Lobo, M. & Paino, C. L. Dynamics of plasma membrane surface related to the release of extracellular vesicles by mesenchymal stem cells in culture. Sci. Rep. 7, 6767 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Becker, A. et al. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30, 836–848 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robbins, P. D. & Morelli, A. E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 14, 195–208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maus, R. L. G. et al. Human melanoma-derived extracellular vesicles regulate dendritic cell maturation. Front Immunol. 8, 358 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Capello, M. et al. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nat. Commun. 10, 254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Minciacchi, V. R., Freeman, M. R. & Di Vizio, D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev. Biol. 40, 41–51 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Di Vizio, D. et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 69, 5601–5609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Minciacchi, V. R. et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6, 11327–11341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Minciacchi, V. R. et al. MYC mediates large oncosome-induced fibroblast reprogramming in prostate cancer. Cancer Res 77, 2306–2317 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Morello, M. et al. Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle 12, 3526–3536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Di Vizio, D. et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am. J. Pathol. 181, 1573–1584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dell’angelica, E. C. et al. Lysosome-related organelles. FASEB J. 14, 1265–1278 (2000).

    PubMed  Google Scholar 

  39. Marks, M. S. & Seabra, M. C. The melanosome: membrane dynamics in black and white. Nat. Rev. Mol. Cell Biol. 2, 738–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Rivoltini, L. et al. Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol. Rev. 188, 97–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Taylor, D. D. & Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Shaw, A. C. et al. Aging of the innate immune system. Curr. Opin. Immunol. 22, 507–513 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Hornung, V. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  PubMed  Google Scholar 

  45. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Alexopoulou, L. et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Barrat, F. J., Elkon, K. B. & Fitzgerald, K. A. Importance of nucleic acid recognition in inflammation and autoimmunity. Annu Rev. Med 67, 323–336 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Hornung, V. et al. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat. Rev. Immunol. 14, 521–528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Paludan, S. R. et al. Recognition of herpesviruses by the innate immune system. Nat. Rev. Immunol. 11, 143–154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Takeuchi, O. & Akira, S. Innate immunity to virus infection. Immunol. Rev. 227, 75–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mathieu, M. et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev. Cell Dev. Biol. 30, 255–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Kowal, J., Tkach, M. & Thery, C. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 29, 116–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Stoorvogel, W. et al. The biogenesis and functions of exosomes. Traffic 3, 321–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Baietti, M. F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Buschow, S. I. et al. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol. Cell Biol. 88, 851–856 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Bowers, K. & Stevens, T. H. Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim. Biophys Acta. 1744, 438–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Zerial, M. & Mcbride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19–30 (2010). sup pp 1-13.

    Article  CAS  PubMed  Google Scholar 

  63. Nanbo, A. et al. Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J. Virol. 87, 10334–10347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Svensson, K. J. et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J. Biol. Chem. 288, 17713–17724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Escrevente, C. et al. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 11, 108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feng, D. et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic 11, 675–687 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Morelli, A. E. et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104, 3257–3266 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Fitzner, D. et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 124, 447–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Tkach, M. & Thery, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Shields, S. B. et al. ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting. J. Cell Biol. 185, 213–224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Colombo, M. et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126(Pt 24), 5553–5565 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Gill, D. J. et al. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J. 26, 600–612 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tamai, K. et al. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys. Res Commun. 399, 384–390 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Flores-Rodriguez, N. et al. ESCRT-0 marks an APPL1-independent transit route for EGFR between the cell surface and the EEA1-positive early endosome. J. Cell Sci. 128, 755–767 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Babst, M. et al. Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev. Cell 3, 271–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Babst, M. et al. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Buchkovich, N. J. et al. Essential N-terminal insertion motif anchors the ESCRT-III filament during MVB vesicle formation. Dev. Cell 27, 201–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Van Niel, G. et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell 21, 708–721 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mathivanan, S. et al. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol. Cell Proteom. 9, 197–208 (2010).

    Article  CAS  Google Scholar 

  82. Poliakov, A. et al. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 69, 159–167 (2009).

    Article  PubMed  Google Scholar 

  83. Conde-Vancells, J. et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome Res. 7, 5157–5166 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dovrat, S. et al. 14-3-3 and beta-catenin are secreted on extracellular vesicles to activate the oncogenic Wnt pathway. Mol. Oncol. 8, 894–911 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, X. et al. 14-3-3zeta delivered by hepatocellular carcinoma-derived exosomes impaired anti-tumor function of tumor-infiltrating T lymphocytes. Cell Death Dis. 9, 159 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Utsugi-Kobukai, S. et al. MHC class I-mediated exogenous antigen presentation by exosomes secreted from immature and mature bone marrow derived dendritic cells. Immunol. Lett. 89, 125–131 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Muntasell, A., Berger, A. C. & Roche, P. A. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J. 26, 4263–4272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gastpar, R. et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65, 5238–5247 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, Q. et al. Transfer of functional cargo in exomeres. Cell Rep. 27, 940–954 e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Poggio, M. et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177, 414–427 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mathivanan, S. et al. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40, D1241–D1244 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Shurtleff, M. J. et al. Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. Proc. Natl Acad. Sci. USA 114, E8987–E8995 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wei, Z. et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat. Commun. 8, 1145 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bryant, R. J. et al. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer 106, 768–774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Manterola, L. et al. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro Oncol. 16, 520–527 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sansone, P. et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc. Natl Acad. Sci. USA 114, E9066–E9075 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445 (2019). e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lotvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    Article  PubMed  Google Scholar 

  101. Wu, J. & Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev. Immunol. 32, 461–488 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Kato, H., Takahasi, K. & Fujita, T. RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol. Rev. 243, 91–98 (2011).

    Article  PubMed  Google Scholar 

  103. Barbalat, R. et al. Nucleic acid recognition by the innate immune system. Annu Rev. Immunol. 29, 185–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Sun, L. et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Lund, J. M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA 101, 5598–5603 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Seth, R. B. et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Sato, S. et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304–4310 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Torralba, D. et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat. Commun. 9, 2658 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Diamond, J. M. et al. Exosomes shuttle TREX1-Sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol. Res. 6, 910–920 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nabet, B. Y. et al. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell 170, 352–366 (2017). e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Baglio, S. R. et al. Sensing of latent EBV infection through exosomal transfer of 5’pppRNA. Proc. Natl Acad. Sci. USA 113, E587–E596 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Takahashi, A. et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun. 8, 15287 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kitai, Y. et al. DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J. Immunol. 198, 1649–1659 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Kurywchak, P., Tavormina, J. & Kalluri, R. The emerging roles of exosomes in the modulation of immune responses in cancer. Genome Med 10, 23 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vacchelli, E. et al. Trial Watch: Immunotherapy plus radiation therapy for oncological indications. Oncoimmunology 5, e1214790 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Demaria, S., Coleman, C. N. & Formenti, S. C. Radiotherapy: changing the game in immunotherapy. Trends Cancer 2, 286–294 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Dreux, M. et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe 12, 558–570 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wieckowski, E. U. et al. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J. Immunol. 183, 3720–3730 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Whiteside, T. L. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc. Trans. 41, 245–51. (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Whiteside, T. L. Exosomes and tumor-mediated immune suppression. J. Clin. Invest 126, 1216–1223 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Chen, X. et al. Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett. 435, 80–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Cooks, T. et al. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat. Commun. 9, 771 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Szczepanski, M. J. et al. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica 96, 1302–1309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Clayton, A. et al. Human tumor-derived exosomes down-modulate NKG2D expression. J. Immunol. 180, 7249–7258 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Lundholm, M. et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS ONE 9, e108925 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Valenti, R. et al. Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res. 67, 2912–2915 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Valenti, R. et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66, 9290–9298 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Yu, S. H. et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J. Immunol. 178, 6867–6875 (2007).

  132. Normanno, N. et al. The role of EGF-related peptides in tumor growth. Front Biosci. 6, D685–D707 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Yarden, Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur. J. Cancer 37, S3–S8 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Pedersen, M. W. et al. The type III epidermal growth factor receptor mutation. Biological significance and potential target for anti-cancer therapy. Ann. Oncol. 12, 745–760 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Song, X. et al. Cancer cell-derived exosomes induce mitogen-activated protein kinase-dependent monocyte survival by transport of functional receptor tyrosine kinases. J. Biol. Chem. 291, 8453–8464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Monypenny, J. et al. ALIX regulates tumor-mediated immunosuppression by controlling EGFR activity and PD-L1 presentation. Cell Rep. 24, 630–641 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bissig, C. & Gruenberg, J. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol. 24, 19–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Haderk, F. et al. Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci. Immunol. 2, eaah5509 (2017).

  140. Zhang, H. et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat. Commun. 8, 15016 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gao, L. et al. Tumor-derived exosomes antagonize innate antiviral immunity. Nat. Immunol. 19, 233–245 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Chemaly, R. F. et al. A multicenter study of pandemic influenza A (H1N1) infection in patients with solid tumors in 3 countries: early therapy improves outcomes. Cancer 118, 4627–4633 (2012).

    Article  PubMed  Google Scholar 

  143. Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med 7, 297–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Daassi, D., Mahoney, K. M. & Freeman, G. J. The importance of exosomal PDL1 in tumour immune evasion. Nat. Rev. Immunol. (2020). [Epub ahead of print].

  145. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Zhao, S. et al. Toll-like receptors and prostate cancer. Front Immunol. 5, 352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang, D. et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Yarovinsky, F. et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626–1629 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Nishiya, T. et al. TLR3 and TLR7 are targeted to the same intracellular compartments by distinct regulatory elements. J. Biol. Chem. 280, 37107–37117 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Carpentier, A. et al. Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol. 12, 401–408 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5, 190–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Liu, Y. et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell 30, 243–256 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Cools-Lartigue, J. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Invest. 123, 3446–3458 (2013).

  155. Coffelt, S. B. et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wu, C. F. et al. The lack of type I interferon induces neutrophil-mediated pre-metastatic niche formation in the mouse lung. Int J. Cancer 137, 837–847 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Liu, Y. & Cao, X. Immunosuppressive cells in tumor immune escape and metastasis. J. Mol. Med (Berl.) 94, 509–522 (2016).

    Article  CAS  Google Scholar 

  158. Zhang, X. et al. Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol. Cancer 17, 146 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Giri, P. K. & Schorey, J. S. Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLoS ONE 3, e2461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Schorey, J. S. et al. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep. 16, 24–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Mantel, P. Y. et al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13, 521–534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhang, Y. et al. Extracellular vesicles derived from ODN-stimulated macrophages transfer and activate Cdc42 in recipient cells and thereby increase cellular permissiveness to EV uptake. Sci. Adv. 5, eaav1564 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Ishii, N. et al. Endosomal localization of TLR8 confers distinctive proteolytic processing on human myeloid cells. J. Immunol. 193, 5118–5128 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl Acad. Sci. USA 109, E2110–E2116 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Liu, Y. et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am. J. Pathol. 176, 2490–2499 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chalmin, F. et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Invest 120, 457–471 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Li, X. et al. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFkappaB-TLR signaling pathway. J. Hematol. Oncol. 9, 42 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chow, A. et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-kappaB. Sci. Rep. 4, 5750 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bretz, N. P. et al. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via Toll-like receptor signaling. J. Biol. Chem. 288, 36691–36702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Im, H. et al. Novel nanosensing technologies for exosome detection and profiling. Lab Chip 17, 2892–2898 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360 (2013).

  172. Mateescu, B. et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. J. Extracell. Vesicles 6, 1286095 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Momen-Heravi, F. et al. Current methods for the isolation of extracellular vesicles. Biol. Chem. 394, 1253–1262 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Li, P. et al. Progress in exosome isolation techniques. Theranostics 7, 789–804 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Siravegna, G. et al. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Nolte-‘T Hoen, E. N. et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic. Acids Res. 40, 9272–9285 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Li, Y. et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 25, 981–984 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Dou, Y. et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci. Rep. 6, 37982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Moutinho-Ribeiro, P., Melo, S. & Macedo, G. Glypican-1 circulating exosomes: a promising clue to individualize surveillance of pancreatic cysts?. Eur. Radio. 28, 3018–3019 (2018).

    Article  Google Scholar 

  181. Diamandis, E. P. & Plebani, M. Glypican-1 as a highly sensitive and specific pancreatic cancer biomarker. Clin. Chem. Lab Med 54, e1–e2 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Frampton, A. E. et al. Glypican-1 is enriched in circulating-exosomes in pancreatic cancer and correlates with tumor burden. Oncotarget 9, 19006–19013 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Xiao, D. et al. Combined exosomal GPC1, CD82, and serum CA19-9 as multiplex targets: a specific, sensitive, and reproducible detection panel for the diagnosis of pancreatic cancer. Mol. Cancer Res. 18, 300–310 (2019).

  184. Alegre, E. et al. Circulating melanoma exosomes as diagnostic and prognosis biomarkers. Clin. Chim. Acta 454, 28–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Kimura, H. et al. CKAP4, a DKK1 receptor, is a biomarker in exosomes derived from pancreatic cancer and a molecular target for therapy. Clin. Cancer Res 25, 1936–1947 (2019).

    Article  PubMed  Google Scholar 

  186. Wang, J., Zheng, Y. & Zhao, M. Exosome-based cancer therapy: implication for targeting cancer stem cells. Front Pharm. 7, 533 (2016).

    Google Scholar 

  187. Ha, D., Yang, N. & Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm. Sin. B 6, 287–296 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Pi, F. et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol. 13, 82–89 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Viaud, S. et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS ONE 4, e4942 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Dai, S. et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther. 16, 782–790 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Escudier, B. et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J. Transl. Med 3, 10 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Morse, M. A. et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med 3, 9 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Shimasaki, N. et al. Expanded and armed natural killer cells for cancer treatment. Cytotherapy 18, 1422–1434 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Zhu, L. et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics 7, 2732–2745 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Cheng, L., Wang, Y. & Huang, L. Exosomes from M1-polarized macrophages potentiate the cancer vaccine by creating a pro-inflammatory microenvironment in the lymph node. Mol. Ther. 25, 1665–1675 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Andre, F. et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J. Immunol. 172, 2126–2136 (2004).

    Article  CAS  PubMed  Google Scholar 

  199. Besse, B. et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5, e1071008 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Schreiner, B. et al. Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J. Neuroimmunol. 155, 172–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Tian, H. & Li, W. Dendritic cell-derived exosomes for cancer immunotherapy: hope and challenges. Ann. Transl. Med. 5, 221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Pitt, J. M. et al. Dendritic cell-derived exosomes for cancer therapy. J. Clin. Invest 126, 1224–1232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Hargadon, K. M. et al. Melanoma-derived factors alter the maturation and activation of differentiated tissue-resident dendritic cells. Immunol. Cell Biol. 94, 24–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Krempski, J. et al. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J. Immunol. 186, 6905–6913 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Karyampudi, L. et al. Accumulation of memory precursor CD8 T cells in regressing tumors following combination therapy with vaccine and anti-PD-1 antibody. Cancer Res. 74, 2974–2985 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kenkel, J. A. et al. An immunosuppressive dendritic cell subset accumulates at secondary sites and promotes metastasis in pancreatic cancer. Cancer Res 77, 4158–4170 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. D, H. Y. & Appel, S. Current status and future perspectives of dendritic cell-based cancer immunotherapy. Scand. J. Immunol. 78, 167–171 (2013).

    Article  CAS  Google Scholar 

  208. Sabado, R. L. & Bhardwaj, N. Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy 2, 37–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  209. Temchura, V. V. et al. Enhancement of immunostimulatory properties of exosomal vaccines by incorporation of fusion-competent G protein of vesicular stomatitis virus. Vaccine 26, 3662–3672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Robbins, P. D., Dorronsoro, A. & Booker, C. N. Regulation of chronic inflammatory and immune processes by extracellular vesicles. J. Clin. Invest 126, 1173–1180 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Pitt, J. M., Kroemer, G. & Zitvogel, L. Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J. Clin. Invest 126, 1139–1143 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Schorey, J. S. & Harding, C. V. Extracellular vesicles and infectious diseases: new complexity to an old story. J. Clin. Invest 126, 1181–1189 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Lindenbergh, M. F. S. & Stoorvogel, W. Antigen presentation by extracellular vesicles from professional antigen-presenting cells. Annu Rev. Immunol. 36, 435–459 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Czernek, L. & Duchler, M. Functions of cancer-derived extracellular vesicles in immunosuppression. Arch. Immunol. Ther. Exp. (Warsz.) 65, 311–323 (2017).

    Article  CAS  Google Scholar 

  215. Bach, D. H. et al. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int J. Cancer 141, 220–230 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Van Niel, G., D’angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Fleissner, F., Bonn, M. & Parekh, S. H. Microscale spatial heterogeneity of protein structural transitions in fibrin matrices. Sci. Adv. 2, e1501778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Chang, J. Y. Structural heterogeneity of 6 M GdmCl-denatured proteins: implications for the mechanism of protein folding. Biochemistry 48, 9340–9346 (2009).

    Article  CAS  PubMed  Google Scholar 

  219. Keedy, D. A. Conformational and connotational heterogeneity: a surprising relationship between protein structural flexibility and puns. Proteins 83, 797–798 (2015).

    Article  CAS  PubMed  Google Scholar 

  220. Antonyak, M. A., Lukey, M. J. & Cerione, R. A. Lipid-filled vesicles modulate macrophages. Science 363, 931–932 (2019).

    Article  CAS  PubMed  Google Scholar 

  221. Kalluri, R. & Lebleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

  222. Veerman, R. E. et al. Immune cell-derived extracellular vesicles - functions and therapeutic applications. Trends Mol. Med. 25, 382–394 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Tan, A., De La Pena, H. & Seifalian, A. M. The application of exosomes as a nanoscale cancer vaccine. Int J. Nanomed. 5, 889–900 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to apologize to those researchers whose related work we were not able to cite in this review. This work was supported by a special program from the Chinese National Natural Science Funds (31701232 to F.X.; 31671457 and 91753139 to L.Z.; and 31871405 and 31571460 to F.Z.), the National Postdoctoral Program for Innovative Talents (BX201700165 to F.X.), the National Science Foundation for Postdoctoral Scientists of China (BX201700165 to F.X.), Distinguished Young Scholars of Jiangsu Province (BK20180043 to F.Z.), the Key Project of University Natural Science Foundation of Jiangsu Province (19KJA550003 to F.Z.), the Shenzhen Basic Research Program (JCYJ20180507182203049 to S.Z.) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and F.X. conceived and drafted the paper. X.Z., L.W., F.X., and F.Z. discussed the concepts presented in the paper. X.Z. generated the figures. F.Z. approved the version to be submitted.

Corresponding author

Correspondence to Fangfang Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Xie, F., Wang, L. et al. The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol 17, 323–334 (2020). https://doi.org/10.1038/s41423-020-0391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-020-0391-1

Keywords

This article is cited by

Search

Quick links