Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SAMD4 family members suppress human hepatitis B virus by directly binding to the Smaug recognition region of viral RNA

Abstract

HBV infection initiates hepatitis B and promotes liver cirrhosis and hepatocellular carcinoma. IFN-α is commonly used in hepatitis B therapy, but how it inhibits HBV is not fully understood. We screened 285 human interferon-stimulated genes (ISGs) for anti-HBV activity using a cell-based assay, which revealed several anti-HBV ISGs. Among these ISGs, SAMD4A was the strongest suppressor of HBV replication. We found the binding site of SAMD4A in HBV RNA, which was a previously unidentified Smaug recognition region (SRE) sequence conserved in HBV variants. SAMD4A binds to the SRE site in viral RNA to trigger its degradation. The SAM domain in SAMD4A is critical for RNA binding and the C-terminal domain of SAMD4A is required for SAMD4A anti-HBV function. Human SAMD4B is a homolog of human SAMD4A but is not an ISG, and the murine genome encodes SAMD4. All these SAMD4 proteins suppressed HBV replication when overexpressed in vitro and in vivo. We also showed that knocking out the Samd4 gene in hepatocytes led to a higher level of HBV replication in mice and AAV-delivered SAMD4A expression reduced the virus titer in HBV-producing transgenic mice. In addition, a database analysis revealed a negative correlation between the levels of SAMD4A/B and HBV in patients. Our data suggest that SAMD4A is an important anti-HBV ISG for use in IFN therapy of hepatitis B and that the levels of SAMD4A/B expression are related to HBV sensitivity in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Perz, J. F., Armstrong, G. L., Farrington, L. A., Hutin, Y. J. F. & Bell, B. P. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J. Hepatol. 45, 529–538 (2006).

    PubMed  Google Scholar 

  2. Yan, H. et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 1, e00049 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Li, H. et al. HBV life cycle is restricted in mouse hepatocytes expressing human NTCP. Cell Mol. Immunol. 11, 175–183 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tuttleman, J. S., Pourcel, C. & Summers, J. Formation of the pool of covalently closed circular viral-DNA in hepadnavirus-infected cells. Cell 47, 451–460 (1986).

    CAS  PubMed  Google Scholar 

  5. Tong, S. P. & Revill, P. Overview of hepatitis B viral replication and genetic variability. J. Hepatol. 64, S4–S16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Newbold, J. E. et al. The covalently closed duplex form of the hepadnavirus genome exists in-situ as a heterogeneous population of viral minichromosomes. J. Virol. 69, 3350–3357 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghany, M. & Liang, T. J. Drug targets and molecular mechanisms of drug resistance in chronic hepatitis B. Gastroenterology 132, 1574–1585 (2007).

    CAS  PubMed  Google Scholar 

  8. Perrillo, R. Benefits and risks of interferon therapy for hepatitis B. Hepatology 49, S103–S111 (2009).

    CAS  PubMed  Google Scholar 

  9. Wieland, S. F., Asabe, S., Engle, R. E., Purcell, R. H. & Chisari, F. V. Limited hepatitis B virus replication space in the chronically hepatitis C virus-infected liver. J. Virol. 88, 5184–5188 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tan, G. Y., Song, H. X., Xu, F. C. & Cheng, G. H. When hepatitis B virus meets interferons. Front. Microbiol. 9, 1611 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Smibert, C. A., Wilson, J. E., Kerr, K. & Macdonald, P. M. Smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Gene Dev. 10, 2600–2609 (1996).

    CAS  PubMed  Google Scholar 

  12. Aviv, T., Lin, Z., Ben-Ari, G., Smibert, C. A. & Sicheri, F. Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p. Nat. Struct. Mol. Biol. 13, 168–176 (2006).

    CAS  PubMed  Google Scholar 

  13. Baez, M. V. & Boccaccio, G. L. Mammalian smaug is a translational repressor that forms cytoplasmic foci similar to stress granules. J. Biol. Chem. 280, 43131–43140 (2005).

    CAS  PubMed  Google Scholar 

  14. Baez, M. V. et al. Smaug1 mRNA-silencing foci respond to NMDA and modulate synapse formation. J. Cell Biol. 195, 1141–1157 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernandez-Alvarez, A. J., Pascual, M. L., Boccaccio, G. L. & Thomas, M. G. Smaug variants in neural and non-neuronal cells. Commun. Integr. Biol. 9, e1139252 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. de Haro, M. et al. Smaug/SAMD4A restores translational activity of CUGBP1 and suppresses CUG-induced myopathy. PLoS Genet. 9, e1003445 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. Chen, Z. et al. Mutation of mouse Samd4 causes leanness, myopathy, uncoupled mitochondrial respiration, and dysregulated mTORC1 signaling. Proc. Natl Acad. Sci. USA 111, 7367–7372 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Niu, N. N. et al. RNA-binding protein SAMD4 regulates skeleton development through translational inhibition of Mig6 expression. Cell Discov. 3, 16050 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y. L. et al. Robust in vitro assay for analyzing the neutralization activity of serum specimens against hepatitis B virus. Emerg. Microbes Infect. 8, 724–733 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gripon, P. et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl Acad. Sci. USA 99, 15655–15660 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, Y. et al. Sleeping beauty transposon-based system for rapid generation of HBV-replicating stable cell lines. J. Virol. Methods 234, 96–100 (2016).

    CAS  PubMed  Google Scholar 

  22. Zhang, T. Y. et al. Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen. Gut 65, 658–671 (2016).

    CAS  PubMed  Google Scholar 

  23. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    CAS  PubMed  Google Scholar 

  24. Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–U545 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–U514 (2007).

    CAS  PubMed  Google Scholar 

  27. Kuriakose, T. et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1, aag2045 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Chen, Q. Y. et al. DNA-dependent activator of interferon-regulatory factors inhibits hepatitis B virus replication. World J. Gastroenterol. 18, 2850–2858 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, W. H., Studach, L. L. & Andrisani, O. M. Proteins ZNF198 and SUZ12 are down-regulated in hepatitis B virus (HBV) X protein-mediated hepatocyte transformation and in HBV replication. Hepatology 53, 1137–1147 (2011).

    CAS  PubMed  Google Scholar 

  30. Tavalai, N., Papior, P., Rechter, S. & Stamminger, T. Nuclear domain 10 components promyelocytic leukemia protein and hDaxx independently contribute to an intrinsic antiviral defense against human cytomegalovirus infection. J. Virol. 82, 126–137 (2008).

    CAS  PubMed  Google Scholar 

  31. Regad, T. & Chelbi-Alix, M. K. Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 20, 7274–7286 (2001).

    CAS  PubMed  Google Scholar 

  32. Mao, R. C. et al. Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog. 9, e1003494 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mao, R. C. et al. Indoleamine 2,3-dioxygenase mediates the antiviral effect of gamma interferon against hepatitis B virus in human hepatocyte-derived cells. J. Virol. 85, 1048–1057 (2011).

    CAS  PubMed  Google Scholar 

  34. Liu, Y. J. et al. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA. PLoS Pathog. 13, e1006296 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Li, J. H. et al. Inhibition of hepatitis B virus replication by MyD88 involves accelerated degradation of pregenomic RNA and nuclear retention of Pre-S/S RNAs. J. Virol. 84, 6387–6399 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, H. F., Kim, S. & Ryu, W. S. DDX3 DEAD-Box RNA helicase inhibits hepatitis B virus reverse transcription by incorporation into nucleocapsids. J. Virol. 83, 5815–5824 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nelson, M. R., Leidal, A. M. & Smibert, C. A. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J. 23, 150–159 (2004).

    CAS  PubMed  Google Scholar 

  38. Brodsky, L. I. et al. A novel unsupervised method to identify genes important in the anti-viral response: application to interferon/ribavirin in hepatitis C patients. PLoS ONE 2, e584 (2007).

    PubMed  PubMed Central  Google Scholar 

  39. Aviv, T. et al. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat. Struct. Biol. 10, 614–621 (2003).

    CAS  PubMed  Google Scholar 

  40. Nishimura, T. et al. The eIF4E-binding protein 4E-T is a component of the mRNA decay machinery that bridges the 5′ and 3′ termini of target mRNAs. Cell Rep. 11, 1425–1436 (2015).

    CAS  PubMed  Google Scholar 

  41. Semotok, J. L. et al. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early drosophila embryo. Curr. Biol. 15, 284–294 (2005).

    CAS  PubMed  Google Scholar 

  42. Zaessinger, S., Busseau, I. & Simonelig, M. Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133, 4573–4583 (2006).

    CAS  PubMed  Google Scholar 

  43. Huang, L. R., Wu, H. L., Chen, P. J. & Chen, D. S. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc. Natl Acad. Sci. USA 103, 17862–17867 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, P. L., Althage, A., Chung, J. & Chisari, F. V. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc. Natl Acad. Sci. USA 99, 13825–13830 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, W. et al. Predictive model for inflammation grades of chronic hepatitis B: large-scale analysis of clinical parameters and gene expressions. Liver Int. 37, 1632–1641 (2017).

    CAS  PubMed  Google Scholar 

  46. Hubel, P. et al. A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Nat. Immunol. 20, 493–49 (2019).

    CAS  PubMed  Google Scholar 

  47. Pollack, J. R. & Ganem, D. An RNA stem-loop structure directs hepatitis-B virus genomic RNA encapsidation. J. Virol. 67, 3254–3263 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sato, S. et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 42, 123–132 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Scientific and Technological Major Project (2017ZX10202203-003), the National Natural Science Foundation of China (81788101, 31420103910, and 81630042), the 111 Project (B12001), and the National Science Foundation of China for Fostering Talents in Basic Research (J1310027).

Author information

Authors and Affiliations

Authors

Contributions

Y.W., X.F., Q.Y., N.X., and J.H. conceived and designed the experiments. Y.W., X.F., Y.S., R.L., Y.L., J.W., and X.L. performed the experiments. Y.W., X.F., Y.S., G.F., N.X., and J.H. analyzed the data. Y.W., X.F., and J.H. wrote the paper.

Corresponding author

Correspondence to Jiahuai Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Fan, X., Song, Y. et al. SAMD4 family members suppress human hepatitis B virus by directly binding to the Smaug recognition region of viral RNA. Cell Mol Immunol 18, 1032–1044 (2021). https://doi.org/10.1038/s41423-020-0431-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-020-0431-x

Keywords

This article is cited by

Search

Quick links