Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SENP6 restricts the IFN-I-induced signaling pathway and antiviral activity by deSUMOylating USP8

Abstract

Type I interferon (IFN-I) exhibits broad-spectrum antiviral properties and is commonly employed in clinical for the treatment of viral infections. In this study, we unveil SENP6 as a potent regulator of IFN-I antiviral activity. SENP6 does not impact the production of IFN-I induced by viruses but rather modulates IFN-I-activated signaling. Mechanistically, SENP6 constitutively interacts with USP8 and inhibits the SUMOylation of USP8, consequently restricting the interaction between USP8 and IFNAR2. The dissociation of USP8 from IFNAR2 enhances IFNAR2 ubiquitination and degradation, thus attenuating IFN-I antiviral activity. Correspondingly, the downregulation of SENP6 promotes the interaction between USP8 and IFNAR2, leading to a reduction in IFNAR2 ubiquitination and, consequently, an enhancement in IFN-I-induced signaling. This study deciphers a critical deSUMOylation-deubiquitination crosstalk that finely regulates the IFN-I response to viral infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang Y, He Y, Wang X, Liang Z, He G, Zhang P, et al. Protein SUMOylation modification and its associations with disease. Open Biol. 2017;7:170167.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wilson VG. Introduction to sumoylation. Adv Exp Med Biol. 2017;963:1–12.

    Article  CAS  PubMed  Google Scholar 

  3. Lascorz J, Codina-Fabra J, Reverter D, Torres-Rosell J. SUMO-SIM interactions: from structure to biological functions. Semin Cell Dev Biol. 2022;132:193–202.

    Article  CAS  PubMed  Google Scholar 

  4. Jia Y, Claessens LA, Vertegaal ACO, Ovaa H. Chemical tools and biochemical assays for SUMO specific proteases (SENPs). ACS Chem Biol. 2019;14:2389–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hotz PW, Muller S, Mendler L. SUMO-specific isopeptidases tuning cardiac SUMOylation in health and disease. Front Mol Biosci. 2021;8:786136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bialik P, Wozniak K. SUMO proteases as potential targets for cancer therapy. Postepy Hig Med Dosw. 2017;71:997–1004.

    Article  Google Scholar 

  7. Drag M, Salvesen GS. DeSUMOylating enzymes-SENPs. IUBMB Life. 2008;60:734–42.

    Article  CAS  PubMed  Google Scholar 

  8. Nie X, Qian L, Sun R, Huang B, Dong X, Xiao Q, et al. Multi-organ proteomic landscape of COVID-19 autopsies. Cell. 2021;184:775–91.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mao M, Xia Q, Zhan GF, Chu QJ, Li X, Lian HK. SENP6 induces microglial polarization and neuroinflammation through de-SUMOylation of Annexin-A1 after cerebral ischaemia-reperfusion injury. Cell Biosci. 2022;12:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu X, Chen W, Wang Q, Li L, Wang C. Negative regulation of TLR inflammatory signaling by the SUMO-deconjugating enzyme SENP6. PLoS Pathog. 2013;9:e1003480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schick M, Zhang L, Maurer S, Maurer HC, Isaakaidis K, Schneider L, et al. Genetic alterations of the SUMO isopeptidase SENP6 drive lymphomagenesis and genetic instability in diffuse large B-cell lymphoma. Nat Commun. 2022;13:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Snell LM, McGaha TL, Brooks DG. Type I interferon in chronic virus infection and cancer. Trends Immunol. 2017;38:542–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008;8:559–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sen GC. Novel functions of interferon-induced proteins. Semin Cancer Biol. 2000;10:93–101.

    Article  CAS  PubMed  Google Scholar 

  15. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Zhao Q, Xu Y, Wu Q, Zhang R, Du Q, et al. E3 ubiquitin ligase MID1 ubiquitinates and degrades type-I interferon receptor 2. Immunology. 2022;167:398–412.

    Article  CAS  PubMed  Google Scholar 

  17. Guo T, Zuo Y, Qian L, Liu J, Yuan Y, Xu K, et al. ADP-ribosyltransferase PARP11 modulates the interferon antiviral response by mono-ADP-ribosylating the ubiquitin E3 ligase beta-TrCP. Nat Microbiol. 2019;4:1872–84.

    Article  CAS  PubMed  Google Scholar 

  18. Hu MM, Liao CY, Yang Q, Xie XQ, Shu HB. Innate immunity to RNA virus is regulated by temporal and reversible sumoylation of RIG-I and MDA5. J Exp Med. 2017;214:973–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ran Y, Liu TT, Zhou Q, Li S, Mao AP, Li Y, et al. SENP2 negatively regulates cellular antiviral response by deSUMOylating IRF3 and conditioning it for ubiquitination and degradation. J Mol Cell Biol. 2011;3:283–92.

    Article  CAS  PubMed  Google Scholar 

  20. Cui Y, Yu H, Zheng X, Peng R, Wang Q, Zhou Y, et al. SENP7 potentiates cGAS activation by relieving SUMO-mediated inhibition of cytosolic DNA sensing. PLoS Pathog. 2017;13:e1006156.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lin X, Sun R, Zhang F, Gao Y, Bin L, Lan K. The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus inhibits expression of SUMO/sentrin-specific peptidase 6 To facilitate establishment of latency. J Virol. 2017;91,:e00806–17.

    Article  PubMed  Google Scholar 

  22. He X, Riceberg J, Soucy T, Koenig E, Minissale J, Gallery M, et al. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor. Nat Chem Biol. 2017;13:1164–71.

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Jin L, Chen X, Yuan Y, Zuo Y, Miao Y, et al. USP12 translocation maintains interferon antiviral efficacy by inhibiting CBP acetyltransferase activity. PLoS Pathog. 2020;16:e1008215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang X, Li Y, He M, Kong X, Jiang P, Liu X, et al. UbiBrowser 2.0: a comprehensive resource for proteome-wide known and predicted ubiquitin ligase/deubiquitinase-substrate interactions in eukaryotic species. Nucleic Acids Res. 2022;50:D719–D28.

    Article  CAS  PubMed  Google Scholar 

  25. Dai T, Zhang L, Ran Y, Zhang M, Yang B, Lu H, et al. MAVS deSUMOylation by SENP1 inhibits its aggregation and antagonizes IRF3 activation. Nat Struct Mol Biol. 2023;30:785–99.

    Article  CAS  PubMed  Google Scholar 

  26. He J, Shangguan X, Zhou W, Cao Y, Zheng Q, Tu J, et al. Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development. Nat Commun. 2021;12:4371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jansen NS, Vertegaal ACO. A chain of events: regulating target proteins by SUMO polymers. Trends Biochem Sci. 2021;46:113–23.

    Article  CAS  PubMed  Google Scholar 

  28. Zuo Y, Feng Q, Jin L, Huang F, Miao Y, Liu J, et al. Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling. Nat Commun. 2020;11:1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xie F, Zhou X, Li H, Su P, Liu S, Li R, et al. USP8 promotes cancer progression and extracellular vesicle-mediated CD8+ T cell exhaustion by deubiquitinating the TGF-beta receptor TbetaRII. EMBO J. 2022;41:e108791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bland T, Sahin GS, Zhu M, Dillon C, Impey S, Appleyard SM, et al. USP8 deubiquitinates the leptin receptor and is necessary for leptin-mediated synapse formation. Endocrinology. 2019;160:1982–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiong W, Gao X, Zhang T, Jiang B, Hu MM, Bu X, et al. USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat Commun. 2022;13:1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crespo-Yanez X, Aguilar-Gurrieri C, Jacomin AC, Journet A, Mortier M, Taillebourg E, et al. CHMP1B is a target of USP8/UBPY regulated by ubiquitin during endocytosis. PLoS Genet. 2018;14:e1007456.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Journet A, Barette C, Aubry L, Soleilhac E, Fauvarque MO. Identification of chemicals breaking the USP8 interaction with its endocytic substrate CHMP1B. SLAS Discov. 2022;27:395–404.

    Article  CAS  PubMed  Google Scholar 

  34. Kasahara K, Aoki H, Kiyono T, Wang S, Kagiwada H, Yuge M, et al. EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase. Nat Commun. 2018;9:758.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Scudder SL, Goo MS, Cartier AE, Molteni A, Schwarz LA, Wright R, et al. Synaptic strength is bidirectionally controlled by opposing activity-dependent regulation of Nedd4-1 and USP8. J Neurosci. 2014;34:16637–49.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gao S, Zhao X, Hou L, Ma R, Zhou J, Zhu MX, et al. The interplay between SUMOylation and phosphorylation of PKCdelta facilitates oxidative stress-induced apoptosis. FEBS J. 2021;288:6447–64.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang C, Zhang C, Dai M, Wang F, Xu S, Han D, et al. Interplay between SUMO1-related SUMOylation and phosphorylation of p65 promotes hepatocellular carcinoma progression. Biochim Biophys Acta Mol Cell Res. 2024;1871:119595.

    Article  CAS  PubMed  Google Scholar 

  38. Gong L, Yeh ET. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem. 2006;281:15869–77.

    Article  CAS  PubMed  Google Scholar 

  39. Yang Y, Fiskus W, Yong B, Atadja P, Takahashi Y, Pandita TK, et al. Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. Proc Natl Acad Sci USA. 2013;110:6841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Q, Liu D, Pan F, Ho CSH, Ho RCM. Ethanol exposure induces microglia activation and neuroinflammation through TLR4 activation and SENP6 modulation in the adolescent rat hippocampus. Neural Plast. 2019;2019:1648736.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. F Zhou (Soochow University) and C Zheng (Fujian Medical University) for important reagents. This work is supported by grants from the National Natural Science Foundation of China (31970844, 32170927) to SDX.

Author information

Authors and Affiliations

Authors

Contributions

JG performed the experiments. SDX, HZ, and JG designed experiments, analyzed data, and wrote the paper. SDX and HZ discussed the manuscript. SDX and HZ were responsible for research supervision, coordination, and strategy.

Corresponding authors

Correspondence to Hui Zheng or Sidong Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zheng, H. & Xiong, S. SENP6 restricts the IFN-I-induced signaling pathway and antiviral activity by deSUMOylating USP8. Cell Mol Immunol 21, 892–904 (2024). https://doi.org/10.1038/s41423-024-01193-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-024-01193-3

Keywords

This article is cited by

Search

Quick links