Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Demyelination-derived lysophosphatidylserine promotes microglial dysfunction and neuropathology in a mouse model of Alzheimer’s disease

A Comment to this article was published on 14 January 2025

Abstract

Microglia dysfunction-associated neuroinflammation is an important driver of Alzheimer’s disease (AD), but the mechanism is poorly understood. Here, we show that demyelination promotes neuroinflammation and cognitive impairment via the lysophosphatidylserine (LysoPS)-GPR34 axis in AD. Demyelination is observed at the early stage and is accompanied by an increase in LysoPS in myelin debris in a 5xFAD mouse model of AD. Reducing the content of LysoPS in myelin or inhibiting its receptor GPR34 via genetic or pharmacological approaches can reduce microglial dysfunction and neuroinflammation and improve microglial Aβ phagocytosis, subsequently resulting in less Aβ deposition and memory restoration in 5xFAD mice. Furthermore, increased LysoPS production and microglial GPR34 expression were also observed in the brains of AD patients. These results reveal the pathogenic role of demyelination-derived LysoPS in microglial dysfunction and AD pathology and suggest that blocking GPR34 as a therapeutic strategy beyond targeting Aβ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The sequencing data reported in this article have been deposited in the Gene Expression Omnibus (GEO accession number: GSE216209). Additional data supporting the presented findings are available in the manuscript and upon request from the corresponding author. All data are available in the main text or the supplementary materials. All the cell lines generated in this study are available from the authors.

References

  1. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.

    Article  CAS  PubMed  Google Scholar 

  2. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5.

    Article  CAS  PubMed  Google Scholar 

  3. Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat Rev Drug Discov. 2022;21:306–18.

    Article  CAS  PubMed  Google Scholar 

  4. Small SA, Duff K. Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron. 2008;60:534–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci. 2015;18:794–9.

    Article  CAS  PubMed  Google Scholar 

  6. Reardon S. Alzheimer’s drug donanemab: what promising trial means for treatments. Nature. 2023;617:232–3.

    Article  CAS  PubMed  Google Scholar 

  7. Travis J. Latest Alzheimer’s antibody is ‘not a miracle drug’. Science. 2023;380:571.

    Article  CAS  PubMed  Google Scholar 

  8. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17:157–72.

    Article  PubMed  Google Scholar 

  9. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493:674–8.

    Article  CAS  PubMed  Google Scholar 

  10. Tarkowski E, Andreasen N, Tarkowski A, Blennow K. Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74:1200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wright AL, Zinn R, Hohensinn B, Konen LM, Beynon SB, Tan RP, et al. Neuroinflammation and neuronal loss precede Abeta plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS One. 2013;8:e59586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–51.

    Article  CAS  PubMed  Google Scholar 

  13. Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, et al. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology. 2009;72:56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Femminella GD, Dani M, Wood M, Fan Z, Calsolaro V, Atkinson R, et al. Microglial activation in early Alzheimer trajectory is associated with higher gray matter volume. Neurology. 2019;92:e1331–e1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N, et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain. 2013;136:2228–38.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Möller HJ, Graeber MB. The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur Arch Psychiatry Clin Neurosci. 1998;248:111–22.

    Article  PubMed  Google Scholar 

  17. Couttas TA, Kain N, Suchowerska AK, Quek LE, Turner N, Fath T, et al. Loss of ceramide synthase 2 activity, necessary for myelin biosynthesis, precedes tau pathology in the cortical pathogenesis of Alzheimer’s disease. Neurobiol Aging. 2016;43:89–100.

    Article  CAS  PubMed  Google Scholar 

  18. Desai MK, Sudol KL, Janelsins MC, Mastrangelo MA, Frazer ME, Bowers WJ. Triple-transgenic Alzheimer’s disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia. 2009;57:54–65.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science. 2005;307:1282–8.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K, et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease. Sci Adv. 2020;6:eabb8680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Depp, C, et al. Myelin dysfunction drives amyloid-beta deposition in models of Alzheimer’s disease. Nature. 2023;618:349–357.

  22. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl J Med. 2013;368:107–16.

    Article  CAS  PubMed  Google Scholar 

  23. Damisah EC, Rai A, Grutzendler J. TREM2: modulator of lipid metabolism in microglia. Neuron. 2020;105:759–61.

    Article  CAS  PubMed  Google Scholar 

  24. Wood H. TREM2 activation promotes remyelination. Nat Rev Neurol. 2020;16:522–522.

    Article  PubMed  Google Scholar 

  25. Li R-Y, Qin Q, Yang HC, Wang YY, Mi YX, Yin YS, et al. TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Mol Neurodegeneration. 2022;17:40.

    Article  CAS  Google Scholar 

  26. Williams K, Ulvestad E, Waage A, Antel JP, McLaurin J. Activation of adult human derived microglia by myelin phagocytosis in vitro. J Neurosci Res. 1994;38:433–43.

    Article  CAS  PubMed  Google Scholar 

  27. Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, Weil MT, Su M, Sen P, et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science. 2018;359:684–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lin B, Zhou Y, Huang Z, Ma M, Qi M, Jiang Z, et al. GPR34 senses demyelination to promote neuroinflammation and pathologies. Cell Mol Immunol. 2024;21:1131–1144.

    Article  CAS  PubMed  Google Scholar 

  29. McLaurin J, Franklin T, Chakrabartty A, Fraser PE. Phosphatidylinositol and inositol involvement in Alzheimer amyloid-β fibril growth and arrest. J Mol Biol. 1998;278:183–94.

    Article  CAS  PubMed  Google Scholar 

  30. Ando K, Erneux C, Homa M, Houben S, de Fisenne MA, Brion JP, et al. Dysregulation of phosphoinositide 5-phosphatases and phosphoinositides in Alzheimer’s disease. Front Neurosci. 2021;15:614855.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ma X, Li X, Wang W, Zhang M, Yang B, Miao Z. Phosphatidylserine, inflammation, and central nervous system diseases. Front Aging Neurosci. 2022;14:975176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamat SS, Camara K, Parsons WH, Chen DH, Dix MM, Bird TD, et al. Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay. Nat Chem Biol. 2015;11:164–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aoki J, Nagai Y, Hosono H, Inoue K, Arai H. Structure and function of phosphatidylserine-specific phospholipase A1. Biochim Biophys Acta. 2002;1582:26–32.

    Article  CAS  PubMed  Google Scholar 

  34. Shanbhag K, Mhetre A, Khandelwal N, Kamat SS. The lysophosphatidylserines—an emerging class of signaling lysophospholipids. J Membr Biol. 2020;253:381–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heckmann BL, Teubner BJW, Tummers B, Boada-Romero E, Harris L, Yang M, et al. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell. 2019;178:536–551.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ennerfelt H, Frost EL, Shapiro DA, Holliday C, Zengeler KE, Voithofer G, et al. SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell. 2022;185:4135–4152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R. The Alzheimer’s beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013;126:329–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roy ER, Chiu G, Li S, Propson NE, Kanchi R, Wang B, et al. Concerted type I interferon signaling in microglia and neural cells promotes memory impairment associated with amyloid β plaques. Immunity. 2022;55:879–894.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, et al. Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia. 2012;60:1468–80.

    Article  PubMed  Google Scholar 

  40. Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments. J neuroinflammation. 2015;12:1–13.

    Article  CAS  Google Scholar 

  41. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47:566–581.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen XY, Feng SN, Bao Y, Zhou YX, Ba F. Identification of Clec7a as the therapeutic target of rTMS in alleviating Parkinson’s disease: targeting neuroinflammation. Biochim Biophys Acta Mol Basis Dis. 2023;1869:166814.

    Article  CAS  PubMed  Google Scholar 

  43. Omi J, Kano K, Aoki J. Current knowledge on the biology of lysophosphatidylserine as an emerging bioactive lipid. Cell Biochem Biophys. 2021;79:497–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Inoue A, Ishiguro J, Kitamura H, Arima N, Okutani M, Shuto A, et al. TGFα shedding assay: an accurate and versatile method for detecting GPCR activation. Nat methods. 2012;9:1021–9.

    Article  CAS  PubMed  Google Scholar 

  45. Yao Z, van Velthoven C, Kunst M, Zhang M, McMillen D, Lee C, et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature. 2023;624:317–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, et al. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci. 2013;16:1896–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43.

    Article  CAS  PubMed  Google Scholar 

  48. Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer’s disease. Cell Mol Neurobiol. 2015;35:71–83.

    Article  CAS  PubMed  Google Scholar 

  49. De Roeck A, Van Broeckhoven C, Sleegers K. The role of ABCA7 in Alzheimer’s disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathologica. 2019;138:201–20.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Iribarren P, Zhou Y, Hu J, Le Y, Wang JM. Role of formyl peptide receptor-like 1 (FPRL1/FPR2) in mononuclear phagocyte responses in Alzheimer disease. Immunologic Res. 2005;31:165–76.

    Article  CAS  Google Scholar 

  51. Lin L-L, Song GJ, Zhang H, Yin Y, Xin SM, Ding L, et al. GPR34 knockdown relieves cognitive deficits and suppresses neuroinflammation in Alzheimer’s disease via the ERK/NF-κB signal. Neuroscience. 2023;528:129–39.

    Article  CAS  PubMed  Google Scholar 

  52. Shi Y, Andhey PS, Ising C, Wang K, Snipes LL, Boyer K, et al. Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. Neuron. 2021;109:2413–2426.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hill RA, Li AM, Grutzendler J. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat Neurosci. 2018;21:683–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sayo A, Konishi H, Kobayashi M, Kano K, Kobayashi H, Hibi H, et al. GPR34 in spinal microglia exacerbates neuropathic pain in mice. J Neuroinflammation. 2019;16:1–11.

    Article  Google Scholar 

  55. Chen J-F, Liu K, Hu B, Li RR, Xin W, Chen H, et al. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease. Neuron. 2021;109:2292–-2307.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16:358–72.

    Article  CAS  PubMed  Google Scholar 

  57. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575:669–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Labzin LI, Heneka MT, Latz E. Innate Immunity and Neurodegeneration. Annu Rev Med. 2018;69:437–49.

    Article  CAS  PubMed  Google Scholar 

  59. Bédard A, Tremblay P, Chernomoretz A, Vallières L. Identification of genes preferentially expressed by microglia and upregulated during cuprizone-induced inflammation. Glia. 2007;55:777–89.

    Article  PubMed  Google Scholar 

  60. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Aging as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15:565–81.

    Article  PubMed  Google Scholar 

  61. Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci. 2016;19:995–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Makide K, Aoki J. GPR34 as a lysophosphatidylserine receptor. J Biochem. 2013;153:327–9.

    Article  CAS  PubMed  Google Scholar 

  63. Izume, T, et al. Structural basis for lysophosphatidylserine recognition by GPR34. bioRxiv, 2023: 2023.02. 15.528751.

  64. Aisen PS. The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol. 2002;1:279–84.

    Article  CAS  PubMed  Google Scholar 

  65. Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA. 2003;289:2819–26.

    Article  CAS  PubMed  Google Scholar 

  66. Zhao Y, Wu X, Li X, Jiang LL, Gui X, Liu Y, et al. TREM2 is a receptor for beta-amyloid that mediates microglial function. Neuron. 2018;97:1023–1031.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 2013;78:631–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008;9:857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003;33:366–74.

    Article  CAS  PubMed  Google Scholar 

  70. Wang X, Cai J, Lin B, Ma M, Tao Y, Zhou Y, et al. GPR34-mediated sensing of lysophosphatidylserine released by apoptotic neutrophils activates type 3 innate lymphoid cells to mediate tissue repair. Immunity. 2021;54:1123–1136.e8.

    Article  CAS  PubMed  Google Scholar 

  71. Sun X, Wang X, Chen T, Li T, Cao K, Lu A, et al. Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system. PLoS One. 2010;5:e9380.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Stine, WB, et al., Preparing synthetic Aβ in different aggregation states, in Alzheimer’s Disease and Frontotemporal Dementia. 2010, Springer. 13-32

  73. Brewer GJ, Torricelli JR. Isolation and culture of adult neurons and neurospheres. Nat Protoc. 2007;2:1490–8.

    Article  CAS  PubMed  Google Scholar 

  74. Chiang ACA, Seua AV, Singhmar P, Arroyo LD, Mahalingam R, Hu J, et al. Bexarotene normalizes chemotherapy-induced myelin decompaction and reverses cognitive and sensorimotor deficits in mice. Acta Neuropathol Commun. 2020;8:193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xia A, Yong X, Zhang C, Lin G, Jia G, Zhao C, et al. Cryo-EM structures of human GPR34 enable the identification of selective antagonists. Proc Natl Acad Sci. 2023;120:e2308435120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cammarota M, Boscia F. Contribution of oligodendrocytes, microglia, and astrocytes to myelin debris uptake in an explant model of inflammatory demyelination in rats. Cells. 2023;12:2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hui Fu for providing the Cnp-Cre mice. Human brain samples were provided by the National Health and Disease Human Brain Tissue Resource Center (Anhui Medical University). This research was supported by the National Key Research and Development Program of China (grant number 2020YFA0509101), the National Natural Science Foundation of China (grant numbers 81821001, 82130107, U20A20359), and the CAS Project for Young Scientists in Basic Research (YSBR-074).

Author information

Authors and Affiliations

Authors

Contributions

YZ, XW, ZH, BL, YH, JL WX and MM performed the experiments; YZ, GH, WM, XW, WJ and RZ designed the research. YZ, XW, WJ and RZ wrote the manuscript. WJ and RZ supervised the project.

Corresponding authors

Correspondence to Xiaqiong Wang, Wei Jiang or Rongbin Zhou.

Ethics declarations

Competing interests

BL, WJ and RZ are co-inventors of a pending patent application (202110355421.6) submitted by University of Science and Technology of China. All the other authors declare that they have no competing interests. RZ is Deputy Editor-in-Chief of Cellular & Molecular Immunology, but he has not been involved in the peer review or the decision-making of the article.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Huang, Z., Lin, B. et al. Demyelination-derived lysophosphatidylserine promotes microglial dysfunction and neuropathology in a mouse model of Alzheimer’s disease. Cell Mol Immunol 22, 134–149 (2025). https://doi.org/10.1038/s41423-024-01235-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-024-01235-w

Keywords

This article is cited by

Search

Quick links