Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FXR protects against neonatal sepsis by enhancing the immunosuppressive function of MDSCs

A Comment to this article was published on 29 August 2025

Abstract

Myeloid-derived suppressor cells (MDSCs) play a protective role against neonatal inflammation during the early postnatal period. However, the mechanisms regulating neonatal MDSC function remain to be fully elucidated. In this study, we report that the bile acid receptor farnesoid X receptor (FXR) acts as a positive regulator of neonatal MDSC function. The FDA-approved FXR agonist obeticholic acid (OCA) protects against neonatal sepsis in an FXR-dependent manner. Genetic deficiency of FXR impairs the immunosuppressive and antibacterial functions of MDSCs, thereby exacerbating the severity of neonatal sepsis. Adoptive transfer of MDSCs alleviates sepsis in both Fxr−/− and Fxrfl/flMrp8-Cre+ pups. Mechanistic studies revealed that Hif1α, a well-established regulator of MDSCs, is a direct transcriptional target of FXR. In patients with neonatal sepsis, downregulation of FXR and HIF-1α in MDSCs was observed, which was inversely correlated with clinical parameters. These observations demonstrate the importance of FXR in neonatal MDSC function and its therapeutic potential in neonatal sepsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801–10. https://doi.org/10.1001/jama.2016.0287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brook B, Harbeson DJ, Shannon CP, Cai B, He D, Ben-Othman R et al. BCG vaccination-induced emergency granulopoiesis provides rapid protection from neonatal sepsis. Sci Transl Med. 2020;12:eaax4517. https://doi.org/10.1126/scitranslmed.aax4517.

  3. Stoll BJ, Puopolo KM, Hansen NI, Sánchez PJ, Bell EF, Carlo WA, et al. Early-Onset Neonatal Sepsis 2015 to 2017, the Rise of Escherichia coli, and the need for novel prevention strategies. JAMA Pediatr. 2020;174:e200593. https://doi.org/10.1001/jamapediatrics.2020.0593.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–11. https://doi.org/10.1016/S0140-6736(19)32989-7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21:485–98. https://doi.org/10.1038/s41577-020-00490-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang Z, Huo Y, Zhou S, Guo J, Ma X, Li T, et al. Cancer cell-intrinsic XBP1 drives immunosuppressive reprogramming of intratumoral myeloid cells by promoting cholesterol production. Cell Metab. 2022;34:2018–2035 e2018. https://doi.org/10.1016/j.cmet.2022.10.010.

    Article  CAS  PubMed  Google Scholar 

  7. Cui Z, Xu H, Wu F, Chen J, Zhu L, Shen Z, et al. Maternal circadian rhythm disruption affects neonatal inflammation via metabolic reprograming of myeloid cells. Nat Metab. 2024;6:899–913. https://doi.org/10.1038/s42255-024-01021-y.

    Article  CAS  PubMed  Google Scholar 

  8. Shi M, Chen Z, Chen M, Liu J, Li J, Xing Z, et al. Continuous activation of polymorphonuclear myeloid-derived suppressor cells during pregnancy is critical for fetal development. Cell Mol Immunol. 2021;18:1692–707. https://doi.org/10.1038/s41423-021-00704-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He YM, Li X, Perego M, Nefedova Y, Kossenkov AV, Jensen EA, et al. Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation. Nat Med. 2018;24:224–31. https://doi.org/10.1038/nm.4467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Derrien M, Mikulic N, Uyoga MA, Chenoll E, Climent E, Howard-Varona A, et al. Gut microbiome function and composition in infants from rural Kenya and association with human milk oligosaccharides. Gut Microbes. 2023;15:2178793. https://doi.org/10.1080/19490976.2023.2178793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Samara J, Moossavi S, Alshaikh B, Ortega VA, Pettersen VK, Ferdous T, et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe. 2022;30:696–711.e695. https://doi.org/10.1016/j.chom.2022.04.005.

    Article  CAS  PubMed  Google Scholar 

  12. He Z, Ma Y, Yang S, Zhang S, Liu S, Xiao J, et al. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum beta-lactamase-producing enteroaggregative Escherichia coli infection. Microbiome. 2022;10:79. https://doi.org/10.1186/s40168-022-01269-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adorini L, Trauner M. FXR agonists in NASH treatment. J Hepatol. 2023;79:1317–31. https://doi.org/10.1016/j.jhep.2023.07.034.

    Article  CAS  PubMed  Google Scholar 

  14. Clifford BL, Sedgeman LR, Williams KJ, Morand P, Cheng A, Jarrett KE, et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab. 2021;33:1671–1684.e1674. https://doi.org/10.1016/j.cmet.2021.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang S, Wu Y, Zhao Z, Wu B, Sun K, Wang H, et al. A new mechanism of obeticholic acid on NASH treatment by inhibiting NLRP3 inflammasome activation in macrophage. Metabolism. 2021;120:154797. https://doi.org/10.1016/j.metabol.2021.154797.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Chen J, Yang X, Shen C, Huang J, Zhang D, et al. Hepatic Zbtb18 (Zinc Finger and BTB Domain Containing 18) alleviates hepatic steatohepatitis via FXR (Farnesoid X Receptor). Signal Transduct Target Ther. 2024;9:20. https://doi.org/10.1038/s41392-023-01727-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60:463–72. https://doi.org/10.1136/gut.2010.212159.

    Article  CAS  PubMed  Google Scholar 

  18. Li S, Zhuge A, Chen H, Han S, Shen J, Wang K et al. Sedanolide alleviates DSS-induced colitis by modulating the intestinal FXR-SMPD3 pathway in mice. J Adv Res. 2025;69:413–26. https://doi.org/10.1016/j.jare.2024.03.026.

  19. Pi Y, Wu Y, Zhang X, Lu D, Han D, Zhao J, et al. Gut microbiota-derived ursodeoxycholic acid alleviates low birth weight-induced colonic inflammation by enhancing M2 macrophage polarization. Microbiome. 2023;11:19. https://doi.org/10.1186/s40168-022-01458-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Panzitt K, Jungwirth E, Krones E, Lee JM, Pollheimer M, Thallinger GG, et al. FXR-dependent Rubicon induction impairs autophagy in models of human cholestasis. J Hepatol. 2020;72:1122–31. https://doi.org/10.1016/j.jhep.2020.01.014.

    Article  CAS  PubMed  Google Scholar 

  21. Hucke S, Herold M, Liebmann M, Freise N, Lindner M, Fleck AK, et al. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion. Acta Neuropathol. 2016;132:413–31. https://doi.org/10.1007/s00401-016-1593-6.

    Article  CAS  PubMed  Google Scholar 

  22. Wang XX, Wang D, Luo Y, Myakala K, Dobrinskikh E, Rosenberg AZ, et al. FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity. J Am Soc Nephrol. 2018;29:118–37. https://doi.org/10.1681/ASN.2017020222.

    Article  CAS  PubMed  Google Scholar 

  23. Kowdley KV, Vuppalanchi R, Levy C, Floreani A, Andreone P, LaRusso NF, et al. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J Hepatol. 2020;73:94–101. https://doi.org/10.1016/j.jhep.2020.02.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Perego M, Xiao Q, He Y, Fu S, He J, et al. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice. J Clin Invest. 2019;129:4261–75. https://doi.org/10.1172/JCI128164.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Garcia-Flores V, Romero R, Tarca AL, Peyvandipour A, Xu Y, Galaz J, et al. Deciphering maternal-fetal cross-talk in the human placenta during parturition using single-cell RNA sequencing. Sci Transl Med. 2024;16:eadh8335. https://doi.org/10.1126/scitranslmed.adh8335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Soisson SM, Parthasarathy G, Adams AD, Sahoo S, Sitlani A, Sparrow C, et al. Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation. Proc Natl Acad Sci USA. 2008;105:5337–42. https://doi.org/10.1073/pnas.0710981105.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jiang L, Zhang H, Xiao D, Wei H, Chen Y. Farnesoid X receptor (FXR): Structures and ligands. Comput Struct Biotechnol J. 2021;19:2148–59. https://doi.org/10.1016/j.csbj.2021.04.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weber R, Umansky V. Fighting infant infections with myeloid-derived suppressor cells. J Clin Invest. 2019;129:4080–2. https://doi.org/10.1172/JCI131649.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shane AL, Sanchez PJ, Stoll BJ. Neonatal sepsis. Lancet. 2017;390:1770–80. https://doi.org/10.1016/S0140-6736(17)31002-4.

    Article  PubMed  Google Scholar 

  30. Strunk T, Molloy EJ, Mishra A, Bhutta ZA. Neonatal bacterial sepsis. Lancet. 2024;404:277–93. https://doi.org/10.1016/S0140-6736(24)00495-1.

    Article  CAS  PubMed  Google Scholar 

  31. Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585. https://doi.org/10.1136/bmj.i1585.

    Article  PubMed  Google Scholar 

  32. Zampieri FG, Bagshaw SM, Semler MW. Fluid therapy for critically Ill adults with sepsis: a review. JAMA. 2023;329:1967–80. https://doi.org/10.1001/jama.2023.7560.

    Article  CAS  PubMed  Google Scholar 

  33. Abdul-Aziz MH, Hammond NE, Brett SJ, Cotta MO, De Waele JJ, Devaux A, et al. Prolonged vs intermittent infusions of beta-lactam antibiotics in adults with sepsis or septic shock: a systematic review and meta-analysis. JAMA. 2024;332:638–48. https://doi.org/10.1001/jama.2024.9803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumagai M, Kimura A, Takei H, Kurosawa T, Aoki K, Inokuchi T, Matsuishi T. Perinatal bile acid metabolism: bile acid analysis of meconium of preterm and full-term infants. J Gastroenterol. 2007;42:904–10. https://doi.org/10.1007/s00535-007-2108-y.

    Article  CAS  PubMed  Google Scholar 

  35. McNeilly AD, Macfarlane DP, O'Flaherty E, Livingstone DE, Mitić T, McConnell KM, et al. Bile acids modulate glucocorticoid metabolism and the hypothalamic‒pituitary‒adrenal axis in obstructive jaundice. J Hepatol. 2010;52:705–11. https://doi.org/10.1016/j.jhep.2009.10.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther. 2022;237:108238. https://doi.org/10.1016/j.pharmthera.2022.108238.

    Article  CAS  PubMed  Google Scholar 

  37. Zöhrer E, Resch B, Scharnagl H, Schlagenhauf A, Fauler G, Stojakovic T, et al. Serum bile acids in term and preterm neonates: A case‒control study determining reference values and the influence of early-onset sepsis. Medicine (Baltim). 2016;95:e5219. https://doi.org/10.1097/MD.0000000000005219.

    Article  Google Scholar 

  38. Wang Y, Deng K, Lin P, Huang L, Hu L, Ye J et al. Elevated total bile acid levels as an independent predictor of mortality in pediatric sepsis. Pediatr Res. 2024;1–8. https://doi.org/10.1038/s41390-024-03438-3.

  39. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–91. https://doi.org/10.1152/physrev.00010.2008.

    Article  CAS  PubMed  Google Scholar 

  40. Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17:225–35. https://doi.org/10.1016/j.cmet.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  41. Larabi AB, Masson HLP, Baumler AJ. Bile acids as modulators of gut microbiota composition and function. Gut Microbes. 2023;15:2172671. https://doi.org/10.1080/19490976.2023.2172671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peiseler M, Schwabe R, Hampe J, Kubes P, Heikenwälder M, Tacke F. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol. 2022;77:1136–60. https://doi.org/10.1016/j.jhep.2022.06.012.

    Article  CAS  PubMed  Google Scholar 

  43. Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019;576:143–8. https://doi.org/10.1038/s41586-019-1785-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. You W, Li L, Sun D, Liu X, Xia Z, Xue S, et al. Farnesoid X Receptor Constructs an Immunosuppressive Microenvironment and Sensitizes FXR(high)PD-L1(low) NSCLC to Anti-PD-1 Immunotherapy. Cancer Immunol Res. 2019;7:990–1000. https://doi.org/10.1158/2326-6066.CIR-17-0672.

    Article  CAS  PubMed  Google Scholar 

  45. Glaser F, John C, Engel B, Höh B, Weidemann S, Dieckhoff J, et al. Liver infiltrating T cells regulate bile acid metabolism in experimental cholangitis. J Hepatol. 2019;71:783–92. https://doi.org/10.1016/j.jhep.2019.05.030.

    Article  CAS  PubMed  Google Scholar 

  46. Shi T, Malik A, Yang Vom Hofe A, Matuschek L, Mullen M, Lages CS, et al. Farnesoid X receptor antagonizes macrophage-dependent licensing of effector T lymphocytes and progression of sclerosing cholangitis. Sci Transl Med. 2022;14:eabi4354. https://doi.org/10.1126/scitranslmed.abi4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, et al. Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T-cell homeostasis. Nature. 2020;577:410–5. https://doi.org/10.1038/s41586-019-1865-0.

    Article  CAS  PubMed  Google Scholar 

  48. Xiahou Z, Wang X, Shen J, Zhu X, Xu F, Hu R, et al. NMI and IFP35 serve as proinflammatory DAMPs during cellular infection and injury. Nat Commun. 2017;8:950. https://doi.org/10.1038/s41467-017-00930-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ulas T, Pirr S, Fehlhaber B, Bickes MS, Loof TG, Vogl T, et al. S100-alarmin-induced innate immune programming protects newborn infants from sepsis. Nat Immunol. 2017;18:622–32. https://doi.org/10.1038/ni.3745.

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, et al. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest. 2003;112:1678–87. https://doi.org/10.1172/JCI18945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qin D, Liu S, Lu Y, Yan Y, Zhang J, Cao S, et al. Lgr5 (+) cell fate regulation by coordination of metabolic nuclear receptors during liver repair. Theranostics. 2022;12:6130–42. https://doi.org/10.7150/thno.74194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen L, Jiao T, Liu W, Luo Y, Wang J, Guo X, et al. Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal. Cell Stem Cell. 2022;29:1366–1381.e1369. https://doi.org/10.1016/j.stem.2022.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen J, Wang R, Xiong F, Sun H, Kemper B, Li W et al. Hammerhead-type FXR agonists induce an enhancer RNA Fincor that ameliorates nonalcoholic steatohepatitis in mice. Elife. 2024;13:RP91438. https://doi.org/10.7554/eLife.91438.

  54. Gueders MM, Balbin M, Rocks N, Foidart JM, Gosset P, Louis R, et al. Matrix metalloproteinase-8 deficiency promotes granulocytic allergen-induced airway inflammation. J Immunol. 2005;175:2589–97. https://doi.org/10.4049/jimmunol.175.4.2589.

    Article  CAS  PubMed  Google Scholar 

  55. Chen X, Wu R, Li L, Zeng Y, Chen J, Wei M, et al. Pregnancy-induced changes to the gut microbiota drive macrophage pyroptosis and exacerbate septic inflammation. Immunity. 2023;56:336–352.e339. https://doi.org/10.1016/j.immuni.2023.01.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the following grants: National Natural Science Foundation of China (No. 82430055, 81925018, and 82130049 to J. Z.; 82001691 to J.H.; and 82488301, 82225015, and 82171284 to Q.L.). This work was also supported by grants to J.H.; the China Postdoctoral Science Foundation (2020M672582); the Science and Technology Planning Project of Guangzhou (No. 2024A03J1237); and the New Cornerstone Science Foundation through the XPLORER PRIZE (to Q.L.).

Author information

Authors and Affiliations

Contributions

J. H., and Y. Z. performed the experiments, analyzed the data, and participated in figure organization and manuscript writing; Y. J., and R. D. participated in most of the experiments. T. L., X. Z. and P. Z. participated in mouse breeding and mouse model construction; K. S. and W. Z. participated in the experiments related to clinical samples; and Q. L. cosupervised this study. J. Z. conceptualized, supervised, and interpreted the experiments and wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to Jie Zhou.

Ethics declarations

Competing interests

The authors declare that they have no competing interests. J.Z. is an editorial board member of Cellular & Molecular Immunology, but she has not been involved in the peer review or the decision-making of the article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Zhang, Y., Jing, Y. et al. FXR protects against neonatal sepsis by enhancing the immunosuppressive function of MDSCs. Cell Mol Immunol 22, 661–673 (2025). https://doi.org/10.1038/s41423-025-01289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-025-01289-4

Keywords

This article is cited by

Search

Quick links