Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The membrane-associated ubiquitin ligases MARCH2 and MARCH3 target TIM-1 to limit Zika virus infection

A Comment to this article was published on 28 November 2025

Abstract

T-cell immunoglobulin mucin family member-1 (TIM-1, also known as HAVCR1/KIM-1) is a transmembrane glycoprotein that has been reported to act as an entry receptor for multiple flaviviruses including Zika virus (ZIKV). The post-translational regulation of TIM-1 and its effects on ZIKV infection are unclear. In this study, we identified the membrane-associated RING-CH-type finger (MARCH) E3 ubiquitin ligase family members MARCH2 and MARCH3 as critical negative regulators of TIM-1 under physiological conditions. MARCH2 and MARCH3 associate with TIM-1 and mediate its K48-linked polyubiquitination at K338 and K346 respectively, leading to subsequent proteasomal degradation. While deficiency of either MARCH2 or MARCH3 modestly increases TIM-1 levels and enhances ZIKV infectivity, double knockout of MARCH2/3 has a more dramatic effect. Double knockout of MARCH2/3 increased ZIKV infectivity in wild-type but not TIM-1 knockout cells, and reconstitution of TIM-1K338R/K346R into TIM-1-deficient cells increases ZIKV infectivity to a higher degree than reconstitution with wild-type TIM-1. Knockout of either MARCH2 or MARCH3 increased ZIKV infectivity and pathogenesis in mice, whereas double knockout of MARCH2/3 has a more dramatic effect. These findings suggest that MARCH2 and MARCH3 target TIM-1 for K48-linked polyubiquitination and proteasomal degradation, thereby acting as redundant host restriction factors to limit ZIKV infection and pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All study data are included in the article and/or supplementary materials.

References

  1. Liu Z-Y, Shi W-F, Qin C-F. The evolution of Zika virus from Asia to the Americas. Nat Rev Microbiol. 2019;17:131–9.

    Article  PubMed  CAS  Google Scholar 

  2. Pierson TC, Diamond MS. The emergence of Zika virus and its new clinical syndromes. Nature. 2018;560:573–81.

    Article  PubMed  CAS  Google Scholar 

  3. Lessler J, Chaisson LH, Kucirka LM, Bi Q, Grantz K, Salje H, et al. Assessing the global threat from Zika virus. Science. 2016;353:aaf8160.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mehand MS, Al-Shorbaji F, Millett P, Murgue B. The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antiviral Res. 2018;159:63–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62:237–44.

    Article  PubMed  CAS  Google Scholar 

  6. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273:4135–42.

    Article  PubMed  CAS  Google Scholar 

  7. Li M, Ablan SD, Miao C, Zheng YM, Fuller MS, Rennert PD, et al. TIM-family proteins inhibit HIV-1 release. Proc Natl Acad Sci USA. 2014;111:E3699–3707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bailly V, Zhang Z, Meier W, Cate R, Sanicola M, Bonventre JV, et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem. 2002;277:39739–48.

    Article  PubMed  CAS  Google Scholar 

  9. Bod L, Kye YC, Shi J, Torlai Triglia E, Schnell A, Fessler J, et al. B-cell-specific checkpoint molecules that regulate anti-tumour immunity. Nature. 2023;619:348–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Giraldo MI, Xia H, Aguilera-Aguirre L, Hage A, van Tol S, Shan C, et al. Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature. 2020;585:414–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Liu J, Quan Y, Tong H, Zhu Y, Shi X, Liu Y, et al. Insights into mosquito-borne arbovirus receptors. Cell Insight. 2024;3:100196.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, et al. Biology of Zika Virus Infection in Human Skin Cells. J Virol. 2015;89:8880–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yu W, Tao J, Cao H, Zheng W, Zhang B, Zhang Y, et al. The HAVCR1-centric host factor network drives Zika virus vertical transmission. Cell Rep. 2025;44:115464.

    Article  PubMed  CAS  Google Scholar 

  14. Kondratowicz AS, Lennemann NJ, Sinn PL, Davey RA, Hunt CL, Moller-Tank S, et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci USA. 2011;108:8426–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jemielity S, Wang JJ, Chan YK, Ahmed AA, Li W, Monahan S, et al. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 2013;9:e1003232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lin H, Li S, Shu HB. The membrane-associated MARCH E3 ligase family: emerging roles in immune regulation. Front Immunol. 2019;10:1751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zheng C. The emerging roles of the MARCH ligases in antiviral innate immunity. Int J Biol Macromol. 2021;171:423–7.

    Article  PubMed  CAS  Google Scholar 

  18. Chen R, Li M, Zhang Y, Zhou Q, Shu HB. The E3 ubiquitin ligase MARCH8 negatively regulates IL-1beta-induced NF-kappaB activation by targeting the IL1RAP coreceptor for ubiquitination and degradation. Proc Natl Acad Sci USA. 2012;109:14128–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lin H, Gao D, Hu MM, Zhang M, Wu XX, Feng L, et al. MARCH3 attenuates IL-1beta-triggered inflammation by mediating K48-linked polyubiquitination and degradation of IL-1RI. Proc Natl Acad Sci USA. 2018;115:12483–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lin H, Feng L, Cui KS, Zeng LW, Gao D, Zhang LX, et al. The membrane-associated E3 ubiquitin ligase MARCH3 downregulates the IL-6 receptor and suppresses colitis-associated carcinogenesis. Cell Mol Immunol. 2021;18:2648–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zeng LW, Feng L, Liu R, Lin H, Shu HB, Li S. The membrane-associated ubiquitin ligases MARCH2 and MARCH3 target IL-5 receptor alpha to negatively regulate eosinophilic airway inflammation. Cell Mol Immunol. 2022;19:1117–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Liu R, Zeng LW, Li HF, Shi JG, Zhong B, Shu HB, et al. PD-1 signaling negatively regulates the common cytokine receptor gamma chain via MARCH5-mediated ubiquitination and degradation to suppress anti-tumor immunity. Cell Res. 2023;33:923–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Umthong S, Timilsina U, D’Angelo MR, Salka K, Stavrou S. MARCH2, a T cell specific factor that restricts HIV-1 infection. PLoS Pathog. 2024;20:e1012330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Feng L, Li C, Zeng LW, Gao D, Sun YH, Zhong L, et al. MARCH3 negatively regulates IL-3-triggered inflammatory response by mediating K48-linked polyubiquitination and degradation of IL-3Ralpha. Sig Transduct Target Ther. 2022;7:21.

    Article  CAS  Google Scholar 

  25. Gao D, Yi XM, Feng L, Li S, Shu HB. MARCH8 mediates K27-linked polyubiquitination of IL-7 receptor alpha to negatively regulate IL-7-triggered T cell homeostasis. J Immunol. 2024;213:1467–78.

    Article  PubMed  CAS  Google Scholar 

  26. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–87.

    Article  PubMed  CAS  Google Scholar 

  28. Chathuranga K, Kim TH, Lee H, Park JS, Kim JH, Chathuranga WAG, et al. Negative regulation of NEMO signaling by the ubiquitin E3 ligase MARCH2. EMBO J. 2020;39:e105139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nakamura N. The role of the transmembrane RING finger proteins in cellular and organelle function. Membranes. 2011;1:354–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Wang C, Fang-Hoover J, et al. Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe. 2016;20:155–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Dejarnac O, Hafirassou ML, Chazal M, Versapuech M, Gaillard J, Perera-Lecoin M, et al. TIM-1 ubiquitination mediates dengue virus entry. Cell Rep. 2018;23:1779–93.

    Article  PubMed  CAS  Google Scholar 

  32. Wang J, Jiang B, Wang K, Dai J, Dong C, Wang Y, et al. A cathelicidin antimicrobial peptide from Hydrophis cyanocinctus inhibits Zika virus infection by downregulating expression of a viral entry factor. J Biol Chem. 2022;298:102471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Fukuda H, Nakamura N, Hirose S. MARCH-III is a novel component of endosomes with properties similar to those of MARCH-II. Journal Biochem. 2006;139:137–45.

    Article  CAS  Google Scholar 

  34. Dukhovny A, Lamkiewicz K, Chen Q, Fricke M, Jabrane-Ferrat N, Marz M, et al. A CRISPR activation screen identifies genes that protect against Zika virus infection. Journal Virol. 2019;93:e00211–19.

    Article  CAS  Google Scholar 

  35. Yang C, Xu H, Yang D, Xie Y, Xiong M, Fan Y, et al. A renal YY1-KIM1-DR5 axis regulates the progression of acute kidney injury. Nat Commun. 2023;14:4261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Umetsu SE, Lee WL, McIntire JJ, Downey L, Sanjanwala B, Akbari O, et al. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol. 2005;6:447–54.

    Article  PubMed  CAS  Google Scholar 

  37. de Souza AJ, Oriss TB, O’Malley KJ, Ray A, Kane LP. T cell Ig and mucin 1 (TIM-1) is expressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation. Proc Natl Acad Sci USA. 2005;102:17113–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang J, Qiao L, Hou Z, Luo G. TIM-1 promotes Hepatitis C virus cell attachment and infection. J Virol. 2017;91:e01583–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhang X, Liang C, Wang H, Guo Z, Rong H, Pan J, et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a functional entry factor for tick-borne encephalitis virus. Mbio. 2022;13:e0286021.

    Article  PubMed  Google Scholar 

  40. Yi X-M, Lei Y-L, Li M, Zhong L, Li S. The monkeypox virus-host interplays. Cell Insight. 2024;3:100185.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhao C, Chen J, Liu Z, Liang H, Chen X, Cheng L, et al. Activation of nicotinic acetylcholine receptor alpha7 subunit limits Zika viral infection via promoting autophagy and ferroptosis. Mol Ther. 2024;32:2641–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints12. Am J Epidemiol. 1938;27:493–7.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Wen-Hua Xu, Xu Chen, and other members of our laboratory for technical help and discussions. This work was supported by grants from the State Key R&D Program of China (2024YFA1306500, 2022YFA1304900), the National Natural Science Foundation of China (32188101), the Major Project of Guangzhou National Laboratory (GZNL2024A01014, GZNL2024A01016), the Fundamental Research Funds for the Central Universities (2042022dx0003), and Natural Science Foundation of Wuhan (2024040701010031).

Author information

Authors and Affiliations

Authors

Contributions

QZ, SL, and H-BS designed research; QZ, Z-WM, H-FL, and J-QZ performed research; QZ, SL, and H-BS analyzed data; and QZ, SL, and H-BS wrote the paper.

Corresponding authors

Correspondence to Hong-Bing Shu or Shu Li.

Ethics declarations

Competing interests

The authors declare no competing interests. Dr. H.-B.S. is editorial board member of Cellular & Molecular Immunology, but he has not been involved in the peer review or the decision-making of the article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Ma, ZW., Li, HF. et al. The membrane-associated ubiquitin ligases MARCH2 and MARCH3 target TIM-1 to limit Zika virus infection. Cell Mol Immunol 22, 1032–1044 (2025). https://doi.org/10.1038/s41423-025-01334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-025-01334-2

Key Words

This article is cited by

Search

Quick links