Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gut-derived indole propionic acid alleviates liver fibrosis by targeting profibrogenic macrophages via the gut‒liver axis

Abstract

Gut-derived metabolites are essential for liver fibrogenesis. The aim of this study was to determine the alteration of indole-3-propionic acid (IPA), a crucial tryptophan metabolite, in liver fibrosis and delineate the roles of enterogenic IPA in fibrogenesis. In the present study, metabolomics assays focused on tryptophan metabolism were applied to explore the decreased levels of IPA in the feces and serum of cirrhotic patients, as well as in the feces and portal vein serum of fibrotic mice. Oral IPA administration exerted strong antifibrotic effects with favorable biosafety in three fibrotic models via multicellular modulation. Multiplex immunohistochemical staining and DAOSLIMIT imaging demonstrated that gut-derived IPA was directly captured by hepatic macrophages. Macrophage-specific AhR knockout blocked the antifibrotic effect of IPA, while the therapeutic efficacy was maintained in mice with HSC- or hepatocyte-specific AhR depletion. Furthermore, IPA governed macrophage recruitment, S100A8/A9+ phenotype transformation and profibrotic and proinflammatory functions, resulting in amelioration of hepatic fibrogenesis. Mechanistically, IPA targeted the AhR/NF-κB/S100A8/A9 axis and AhR/SPHK2/S1P signaling to inhibit the profibrotic biological characteristics of macrophages and subsequently interrupted the profibrogenic crosstalk between macrophages and hepatic stellate cells (HSCs) in coculture systems and 3D liver spheroid models. These findings increase the understanding of the effects of enterogenic tryptophan metabolites on liver fibrogenesis via the gut‒liver axis and support the translational potential of IPA. By targeting profibrogenic macrophages, IPA could serve as a promising candidate for the clinical management of liver fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gut-derived IPA exerts antifibrotic effects in vivo.
Fig. 2: IPA reveals multicellular roles in anti-fibrogenesis.
Fig. 3: IPA directly targets hepatic macrophages to drive its  antifibrotic effects.
Fig. 4: IPA modulates the AhR/NF-κB pathway to inhibit the profibrotic functions of macrophages.
Fig. 5: IPA suppresses S100A8/A9+ macrophages via AhR/NF-κB and alters sphingolipid metabolism to attenuate fibrogenesis.
Fig. 6: IPA ameliorates liver fibrosis via the macrophage-HSC axis.

Similar content being viewed by others

Data availability

All sequencing data generated during this study have been deposited in the Gene Expression Omnibus (GEO) database (GSE277148). The previously published human scRNA-seq datasets used in this study are available in GSE168933. The metagenomic and metabolomic data, along with the research materials referenced in this article, are available from the corresponding author upon reasonable request.

Code availability

All sequencing data generated during this study have been deposited in the Gene Expression Omnibus (GEO) database (GSE277148). The previously published human scRNA-seq datasets used in this study are available in GSE168933. The metagenomic and metabolomic data, along with the research materials referenced in this article, are available from the corresponding author upon reasonable request.

References

  1. Huang DQ, Terrault NA, Tacke F, Gluud LL, Arrese M, Bugianesi E, et al. Global epidemiology of cirrhosis - etiology, trends and predictions. Nat Rev Gastroenterol Hepatol. 2023;20:388–98.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Trivedi P, Wang S, Friedman SL. The power of plasticity-metabolic regulation of hepatic stellate cells. Cell Metab. 2021;33:242–57.

    Article  PubMed  CAS  Google Scholar 

  3. Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021;18:151–66.

    Article  PubMed  Google Scholar 

  4. Ma PF, Gao CC, Yi J, Zhao JL, Liang SQ, Zhao Y, et al. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol. 2017;67:770–9.

    Article  PubMed  CAS  Google Scholar 

  5. Hsu CL, Schnabl B. The gut-liver axis and gut microbiota in health and liver disease. Nat Rev Microbiol. 2023;21:719–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Guan H, Zhang X, Kuang M, Yu J. The gut-liver axis in immune remodeling of hepatic cirrhosis. Front Immunol. 2022;13:946628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Agus A, Planchais J, Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe. 2018;23:716–24.

    Article  PubMed  CAS  Google Scholar 

  8. Wang G, Fan Y, Zhang G, Cai S, Ma Y, Yang L, et al. Microbiota-derived indoles alleviate intestinal inflammation and modulate microbiome by microbial cross-feeding. Microbiome. 2024;12:59.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jia D, Wang Q, Qi Y, Jiang Y, He J, Lin Y, et al. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pancancer. Cell. 2024;187:1651–65.e21.

    Article  PubMed  CAS  Google Scholar 

  10. Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551:648–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Flannigan KL, Nieves KM, Szczepanski HE, Serra A, Lee JW, Alston LA, et al. The Pregnane X Receptor and Indole-3-Propionic Acid Shape the Intestinal Mesenchyme to Restrain Inflammation and Fibrosis. Cell Mol Gastroenterol Hepatol. 2023;15:765–95.

    Article  PubMed  CAS  Google Scholar 

  12. Sehgal R, Ilha M, Vaittinen M, Kaminska D, Männistö V, Kärjä V, et al. Indole-3-Propionic acid, a gut-derived tryptophan metabolite, associates with hepatic fibrosis. Nutrients. 2021;13:3509.

  13. Wang S, Xiong L, Ruan Z, Gong X, Luo Y, Wu C, et al. Indole-3-propionic acid alleviates sepsis-associated acute liver injury by activating pregnane X receptor. Mol Med. 2023;29:65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Min BH, Devi S, Kwon GH, Gupta H, Jeong JJ, Sharma SP, et al. Gut microbiota-derived indole compounds attenuate metabolic dysfunction-associated steatotic liver disease by improving fat metabolism and inflammation. Gut Microbes. 2024;16:2307568.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ganesan R, Gupta H, Jeong JJ, Sharma SP, Won SM, Oh KK, et al. Characteristics of microbiome-derived metabolomics according to the progression of alcoholic liver disease. Hepatol Int. 2024;18:486–99.

    Article  PubMed  Google Scholar 

  16. Zhao ZH, Xin FZ, Xue Y, Hu Z, Han Y, Ma F, et al. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats. Exp Mol Med. 2019;51:1–14.

    PubMed  PubMed Central  Google Scholar 

  17. Ilha M, Sehgal R, Matilainen J, Rilla K, Kaminska D, Gandhi S, et al. Indole-3-propionic acid promotes hepatic stellate cells inactivation. J Transl Med. 2025;23:253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Yuan X, Yang J, Huang Y, Li J, Li Y. Gut Microbiota metabolite 3-indolepropionic acid directly activates hepatic stellate cells by ROS/JNK/p38 signaling pathways. Biomolecules. 2023;13:1464.

  19. Liu F, Sun C, Chen Y, Du F, Yang Y, Wu G. Indole-3-propionic Acid-aggravated CCl(4)-induced Liver Fibrosis via the TGF-β1/Smads signaling pathway. J Clin Transl Hepatol. 2021;9:917–30.

    PubMed  PubMed Central  Google Scholar 

  20. Wei Y, Peng N, Deng C, Zhao F, Tian J, Tang Y, et al. Aryl hydrocarbon receptor activation drives polymorphonuclear myeloid-derived suppressor cell response and efficiently attenuates experimental Sjögren’s syndrome. Cell Mol Immunol. 2022;19:1361–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dutta M, Lim JJ, Cui JY. Pregnane X receptor and the gut-liver axis: a recent update. Drug Metab Dispos. 2022;50:478–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Unamuno X, Gómez-Ambrosi J, Ramírez B, Rodríguez A, Becerril S, Valentí V, et al. NLRP3 inflammasome blockade reduces adipose tissue inflammation and extracellular matrix remodeling. Cell Mol Immunol. 2021;18:1045–57.

    Article  PubMed  CAS  Google Scholar 

  23. Németh J, Stein I, Haag D, Riehl A, Longerich T, Horwitz E, et al. S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver carcinogenesis. Hepatology. 2009;50:1251–62.

    Article  PubMed  Google Scholar 

  24. Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol. 2024;25:802–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yang L, Yue S, Yang L, Liu X, Han Z, Zhang Y, et al. Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis. J Hepatol. 2013;59:114–23.

    Article  PubMed  CAS  Google Scholar 

  26. Buonomo EL, Mei S, Guinn SR, Leo IR, Peluso MJ, Nolan MA, et al. Liver stromal cells restrict macrophage maturation and stromal IL-6 limits the differentiation of cirrhosis-linked macrophages. J Hepatol. 2022;76:1127–37.

    Article  PubMed  CAS  Google Scholar 

  27. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66:1300–12.

    Article  PubMed  CAS  Google Scholar 

  28. Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, et al. Metabolomics and lipidomics in NAFLD: biomarkers and noninvasive diagnostic tests. Nat Rev Gastroenterol Hepatol. 2021;18:835–56.

    Article  PubMed  Google Scholar 

  29. Wrzosek L, Ciocan D, Hugot C, Spatz M, Dupeux M, Houron C, et al. Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury. Gut. 2021;70:1299–308.

    Article  PubMed  CAS  Google Scholar 

  30. Sehgal R, de Mello VD, Männistö V, Lindström J, Tuomilehto J, Pihlajamäki J, et al. Indolepropionic Acid, a Gut Bacteria-produced tryptophan metabolite and the risk of type 2 diabetes and non-alcoholic fatty liver disease. Nutrients. 2022;14:4695.

  31. Sharma SP, Gupta H, Kwon GH, Lee SY, Song SH, Kim JS, et al. Gut microbiome and metabolome signatures in liver cirrhosis-related complications. Clin Mol Hepatol. 2024;30:845–62.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yisireyili M, Takeshita K, Saito S, Murohara T, Niwa T. Indole-3-propionic acid suppresses indoxyl sulfate-induced expression of fibrotic and inflammatory genes in proximal tubular cells. Nagoya J Med Sci. 2017;79:477–86.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhao Z, Jiang S, Fan Q, Xu K, Xu Y, Wu F, et al. Apocynum venetum leaf extract alleviated doxorubicin-induced cardiotoxicity by regulating organic acid metabolism in gut microbiota. Front Pharm. 2023;14:1286210.

    Article  CAS  Google Scholar 

  34. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397–411.

    Article  PubMed  CAS  Google Scholar 

  35. Hammerich L, Tacke F. Hepatic inflammatory responses in liver fibrosis. Nat Rev Gastroenterol Hepatol. 2023;20:633–46.

    Article  PubMed  CAS  Google Scholar 

  36. Hou C, Wang D, Zhao M, Ballar P, Zhang X, Mei Q, et al. MANF brakes TLR4 signaling by competitively binding S100A8 with S100A9 to regulate macrophage phenotypes in hepatic fibrosis. Acta Pharm Sin B. 2023;13:4234–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liu Y, Kong X, You Y, Xiang L, Zhang Y, Wu R, et al. S100A8-Mediated NLRP3 Inflammasome-dependent pyroptosis in macrophages facilitates liver fibrosis progression. Cells. 2022;11:3579.

  38. Tao L, Zhang Q, Liu L, Wang K, Wang J, Liu X, et al. Inhibition of AhR disrupts intestinal epithelial barrier and induces intestinal injury by activating NF-κB in COPD. Faseb J. 2024;38:e70256.

    Article  PubMed  CAS  Google Scholar 

  39. Kimura A, Naka T, Nakahama T, Chinen I, Masuda K, Nohara K, et al. Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. J Exp Med. 2009;206:2027–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ishay Y, Nachman D, Khoury T, Ilan Y. The role of the sphingolipid pathway in liver fibrosis: an emerging new potential target for novel therapies. Am J Physiol Cell Physiol. 2020;318:C1055–c64.

    Article  PubMed  CAS  Google Scholar 

  41. González-Fernández B, Sánchez DI, González-Gallego J, Tuñón MJ. Sphingosine 1-phosphate signaling as a target in hepatic fibrosis therapy. Front Pharm. 2017;8:579.

    Article  Google Scholar 

  42. Bajaj JS, Kassam Z, Fagan A, Gavis EA, Liu E, Cox IJ, et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: A randomized clinical trial. Hepatology. 2017;66:1727–38.

    Article  PubMed  CAS  Google Scholar 

  43. Mohamad Nor MH, Ayob N, Mokhtar NM, Raja Ali RA, Tan GC, Wong Z, et al. The Effect of Probiotics (MCP(®) BCMC(®) Strains) on Hepatic Steatosis, small intestinal mucosal immune function, and intestinal barrier in patients with non-alcoholic fatty liver disease. Nutrients. 2021;13:3192.

  44. Sayegh M, Ni QQ, Ranawana V, Raikos V, Hayward NJ, Hayes HE, et al. Habitual consumption of high-fiber bread fortified with bean hulls increased plasma indole-3-propionic concentration and decreased putrescine and deoxycholic acid fecal concentrations in healthy volunteers. Br J Nutr. 2023;130:1521–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mercenier A, Vu LD, Poppe J, Albers R, McKay S, Van den Abbeele P. Carrot-Derived Rhamnogalacturonan-I Consistently Increases the Microbial Production of Health-Promoting Indole-3-Propionic Acid Ex Vivo. Metabolites. 2024;14:722.

  46. Kim CS, Jung S, Hwang GS, Shin DM. Gut microbiota indole-3-propionic acid mediates neuroprotective effect of probiotic consumption in healthy elderly: A randomized, double-blind, placebo-controlled, multicenter trial and in vitro study. Clin Nutr. 2023;42:1025–33.

    Article  PubMed  CAS  Google Scholar 

  47. Wang Y, Zhou J, Ye J, Sun Z, He Y, Zhao Y, et al. Multiomics reveal microbial determinants impacting the treatment outcome of antidepressants in major depressive disorder. Microbiome. 2023;11:195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wei J, Sun Y, Wang H, Zhu T, Li L, Zhou Y, et al. Designer cellular spheroids with DNA origami for drug screening. Sci Adv. 2024;10:eado9880.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wu J, Lu Z, Jiang D, Guo Y, Qiao H, Zhang Y, et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell. 2021;184:3318–32.e17.

    Article  PubMed  CAS  Google Scholar 

  50. Lu Z, Cai Y, Nie Y, Yang Y, Wu J, Dai Q. A practical guide to scanning light-field microscopy with digital adaptive optics. Nat Protoc. 2022;17:1953–79.

    Article  PubMed  CAS  Google Scholar 

  51. Lu Z, Wu J, Qiao H, Zhou Y, Yan T, Zhou Z, et al. Phase-space deconvolution for light field microscopy. Opt Express. 2019;27:18131–45.

    Article  PubMed  Google Scholar 

  52. Lu Z, Zuo S, Shi M, Fan J, Xie J, Xiao G, et al. Long-term intravital subcellular imaging with confocal scanning light-field microscopy. Nat Biotechnol. 2025;43:569–80.

    Article  PubMed  CAS  Google Scholar 

  53. Lu Z, Liu Y, Jin M, Luo X, Yue H, Wang Z, et al. Virtual-scanning light-field microscopy for robust snapshot high-resolution volumetric imaging. Nat Methods. 2023;20:735–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2023YFC2507500), the National Natural Science Foundation of China (82470661, 82070616, 82270636, 82100608, 82300607), the New Quality Clinical Specialties of High-end Medical Disciplinary Construction in Pudong New Area (2025-PWXZ-04) and the Talent Plan of the Shanghai Municipal Health Commission for Academic Leaders (2022XD028). We gratefully acknowledge Eastern Hepatobiliary Surgery Hospital (Navy Medical University, Shanghai, China) for supporting tissue sample determination. Figure support was provided by Figdraw.

Author information

Authors and Affiliations

Contributions

Xin Zeng and Yong Lin: designed, coordinated and supervised the study, reviewed, and edited the manuscript; Yuanyuan Luo, Yarong Hao, Chunyan Sun, Zhi Lu, and Hao Wang: original draft preparation, established the animal models, and drafted the manuscript; Yuhan Lin, Lingyan Cai, Chenhong Ding, Binbin Li, and Fei Chen, and Yiting Lu: performed the data analysis and interpretation of the data. All the authors critically revised the manuscript and approved the final version.

Corresponding authors

Correspondence to Yong Lin or Xin Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study protocol was conducted in accordance with the Declaration of Helsinki and approved by the Shanghai Changzheng Hospital Ethics Committee (no. 2018SL004). Written informed consent was obtained from all participants before recruitment. All the animal studies were approved by the Shanghai East Hospital Ethics Committee (no. 2023083) and conducted in accordance with the guidelines of the Institutional Animal Care and Use Committee (IACUC), ensuring the welfare and minimal suffering of the animals involved.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Hao, Y., Sun, C. et al. Gut-derived indole propionic acid alleviates liver fibrosis by targeting profibrogenic macrophages via the gut‒liver axis. Cell Mol Immunol 22, 1414–1426 (2025). https://doi.org/10.1038/s41423-025-01339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-025-01339-x

Keywords

Search

Quick links