Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MST1 bridges LYN and SHP-1 to suppress FcεRI-mediated mast cell activation and allergic responses

Abstract

Mammalian sterile-20-like kinase 1 (MST1) is a core component of the Hippo signaling pathway. A previous study of 24 patients with MST1 deficiency revealed that more than half of the patients presented symptoms of airway hyperresponsiveness and atopic dermatitis. We also found significantly reduced MST1 expression in patients with allergies and in mouse models of allergic asthma, suggesting that aberrant MST1 expression may be broadly relevant to allergic diseases. However, the specific mechanism by which MST1 may be related to allergic disorders has remained unclear. In our study, Mst1-/- mice displayed exacerbated IgE-mediated allergic responses, including passive systemic and cutaneous anaphylaxis. More intriguingly, mast cell-deficient KitW-sh/W-sh mice reconstituted with Mst1-/- bone marrow-derived mast cells (BMMCs) also presented aggravated IgE-mediated hypersensitivity reactions and mast cell-dependent asthma. MST1 deficiency notably promoted inflammatory cytokine production, cell degranulation, and intracellular calcium mobilization in FcεRI-stimulated BMMCs. Mechanistically, MST1 facilitates SRC homology domain-containing tyrosine phosphatase-1 (SHP-1)-mediated dephosphorylation of LCK/YES-related protein tyrosine kinase (LYN) at Y397 to repress FcɛRI signaling. Coimmunoprecipitation studies revealed that MST1 acts as a scaffold molecule to enhance the interaction between SHP-1 and LYN in a kinase activity-independent manner. Two patient-derived mutants presented significantly reduced intracellular protein expression levels and impaired LYN-SHP-1 interactions. Our study reveals a noncanonical role of MST1 in maintaining immune homeostasis by preventing mast cell-mediated hypersensitivity. This likely explains the increased susceptibility to allergic diseases in MST1-deficient patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reduced MST1 expression in patients with allergic diseases and mice with asthma.
Fig. 2: MST1 deficiency worsens IgE-mediated anaphylactic responses.
Fig. 3: The absence of MST1 in mast cells exacerbates IgE-mediated anaphylactic reactions.
Fig. 4: MST1 deficiency exacerbates mast cell-dependent asthma.
Fig. 5: Mst1-/- BMMCs exhibit heightened activation after allergen stimulation.
Fig. 6: MST1 restrains the phosphorylation of proximal FcεRI signaling by targeting LYN.
Fig. 7: MST1 enhances the interaction between LYN and SHP-1.
Fig. 8: MST1 serves as a bridge between LYN and SHP-1.

Similar content being viewed by others

References

  1. Breiteneder H, Peng YQ, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, et al. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy. 2020;75:3039–68.

    Article  PubMed  Google Scholar 

  2. Shin YH, Hwang J, Kwon R, Lee SW, Kim MS, Shin JI, et al. Global, regional, and national burden of allergic disorders and their risk factors in 204 countries and territories, from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Allergy. 2023;78:2232–54.

    Article  CAS  PubMed  Google Scholar 

  3. Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, et al. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther. 2023;8:138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ober C, Yao TC. The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev. 2011;242:10–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferreira MA, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet. 2017;49:1752–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levi-Schaffer F, Gibbs BF, Hallgren J, Pucillo C, Redegeld F, Siebenhaar F, et al. Selected recent advances in understanding the role of human mast cells in health and disease. J Allergy Clin Immunol. 2022;149:1833–44.

    Article  CAS  PubMed  Google Scholar 

  7. Kolkhir P, Elieh-Ali-Komi D, Metz M, Siebenhaar F, Maurer M. Understanding human mast cells: lesson from therapies for allergic and nonallergic diseases. Nat Rev Immunol. 2022;22:294–308.

    Article  CAS  PubMed  Google Scholar 

  8. Elieh Ali Komi D, Wöhrl S, Bielory L. Mast cell biology at molecular level: a comprehensive review. Clin Rev Allergy Immunol. 2020;58:342–65.

    Article  PubMed  Google Scholar 

  9. Undem BJ, Taylor-Clark T. Mechanisms underlying the neuronal-based symptoms of allergy. J Allergy Clin Immunol. 2014;133:1521–34.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dispenza MC, Metcalfe DD, Olivera A. Research advances in mast cell biology and their translation into novel therapies for anaphylaxis. J Allergy Clin Immunol Pr. 2023;11:2032–42.

    Article  CAS  Google Scholar 

  11. Kalesnikoff J, Galli SJ. New developments in mast cell biology. Nat Immunol. 2008;9:1215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blank U, Huang H, Kawakami T. The high affinity IgE receptor: a signaling update. Curr Opin Immunol. 2021;72:51–8.

    Article  CAS  PubMed  Google Scholar 

  13. Meltzer EO, Berkowitz RB, Grossbard EB. An intranasal Syk-kinase inhibitor (R112) improves the symptoms of seasonal allergic rhinitis in a park environment. J Allergy Clin Immunol. 2005;115:791–6.

    Article  CAS  PubMed  Google Scholar 

  14. Dispenza MC, Krier-Burris RA, Chhiba KD, Undem BJ, Robida PA, Bochner BS. Bruton’s tyrosine kinase inhibition effectively protects against human IgE-mediated anaphylaxis. J Clin Investig. 2020;130:4759–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma S, Meng Z, Chen R, Guan KL. The hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604.

    Article  CAS  PubMed  Google Scholar 

  16. Abdollahpour H, Appaswamy G, Kotlarz D, Diestelhorst J, Beier R, Schäffer AA, et al. The phenotype of human STK4 deficiency. Blood. 2012;119:3450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nehme NT, Schmid JP, Debeurme F, André-Schmutz I, Lim A, Nitschke P, et al. MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood. 2012;;119:3458–68.

    Article  PubMed  Google Scholar 

  18. Mou F, Praskova M, Xia F, Van Buren D, Hock H, Avruch J, et al. The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes. J Exp Med. 2012;209:741–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cagdas D, Halacli SO, Tan C, Esenboga S, Karaatmaca B, Cetinkaya PG, et al. Diversity in serine/threonine protein kinase-4 deficiency and review of the literature. J Allergy Clin Immunol Pr. 2021;9:3752–66.e4.

    Article  CAS  Google Scholar 

  20. Williams CM, Galli SJ. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J Exp Med. 2000;192:455–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galli SJ, Gaudenzio N, Tsai M. Mast cells in inflammation and disease: recent progress and ongoing concerns. Annu Rev Immunol. 2020;38:49–77.

    Article  CAS  PubMed  Google Scholar 

  22. Radu M, Chernoff J. An in vivo assay to test blood vessel permeability. J Vis Exp. 2013;73:e50062.

  23. Zhang Z, Kurashima Y. Two sides of the coin: mast cells as a key regulator of allergy and acute/chronic inflammation. Cells. 2021;10:1615.

  24. Valenta R. The future of antigen-specific immunotherapy of allergy. Nat Rev Immunol. 2002;2:446–53.

    Article  CAS  PubMed  Google Scholar 

  25. Sun Y, Yang Y, Zhao Y, Li X, Zhang Y, Liu Z. The role of the tyrosine kinase Lyn in allergy and cancer. Mol Immunol. 2021;131:121–6.

    Article  CAS  PubMed  Google Scholar 

  26. Galan JA, Avruch J. MST1/MST2 protein kinases: regulation and physiologic roles. Biochemistry. 2016;55:5507–19.

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Fang R, Liu B, Shi H, Wang Y, Zhang W, et al. Deacetylation of tumor-suppressor MST1 in Hippo pathway induces its degradation through HBXIP-elevated HDAC6 in promotion of breast cancer growth. Oncogene. 2016;35:4048–57.

    Article  CAS  PubMed  Google Scholar 

  28. Xu C, Fang T, Qu J, Miao Y, Tian L, Zhang M, et al. RASSF4 attenuates metabolic dysfunction-associated steatotic liver disease progression via Hippo signaling and suppresses hepatocarcinogenesis. Cell Mol Gastroenterol Hepatol. 2024;18:101348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shu B, Zhou Y, Lei G, Peng Y, Ding C, Li Z, et al. TRIM21 is critical in regulating hepatocellular carcinoma growth and response to therapy by altering the MST1/YAP pathway. Cancer Sci. 2024;115:1476–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Somani AK, Yuen K, Xu F, Zhang J, Branch DR, Siminovitch KA. The SH2 domain containing tyrosine phosphatase-1 downregulates activation of Lyn and Lyn-induced tyrosine phosphorylation of the CD19 receptor in B cells. J Biol Chem. 2001;276:1938–44.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Shen K, Lu W, Cole PA. The role of C-terminal tyrosine phosphorylation in the regulation of SHP-1 explored via expressed protein ligation. J Biol Chem. 2003;278:4668–74.

    Article  CAS  PubMed  Google Scholar 

  32. Glantschnig H, Rodan GA, Reszka AA. Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. J Biol Chem. 2002;277:42987–96.

    Article  CAS  PubMed  Google Scholar 

  33. Li T, Wen Y, Lu Q, Hua S, Hou Y, Du X, et al. MST1/2 in inflammation and immunity. Cell Adh Migr. 2023;17:1–15.

    PubMed  PubMed Central  Google Scholar 

  34. Guennoun A, Bougarn S, Khan T, Mackeh R, Rahman M, Al-Ali F, et al. A novel STK4 mutation impairs T-cell immunity through dysregulation of cytokine-induced adhesion and chemotaxis genes. J Clin Immunol. 2021;41:1839–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19:491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L, et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci USA. 2010;107:1431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hong L, Li X, Zhou D, Geng J, Chen L. Role of Hippo signaling in regulating immunity. Cell Mol Immunol. 2018;15:1003–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li W, Xiao J, Zhou X, Xu M, Hu C, Xu X, et al. STK4 regulates TLR pathways and protects against chronic inflammation-related hepatocellular carcinoma. J Clin Investig. 2015;125:4239–54.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, et al. Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun. 2017;8:14275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou D, Medoff BD, Chen L, Li L, Zhang XF, Praskova M, et al. The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naïve T cells. Proc Natl Acad Sci USA. 2008;;105:20321–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bai X, Huang L, Niu L, Zhang Y, Wang J, Sun X, et al. Mst1 positively regulates B-cell receptor signaling via CD19 transcriptional levels. Blood Adv. 2016;1:219–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Turunen SP, von Nandelstadh P, Öhman T, Gucciardo E, Seashore-Ludlow B, Martins B, et al. FGFR4 phosphorylates MST1 to confer breast cancer cells resistance to MST1/2-dependent apoptosis. Cell Death Differ. 2019;26:2577–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu Y, Qu M, He Y, He Q, Shen T, Luo J, et al. Smurf1 polyubiquitinates on K285/K282 of the kinases Mst1/2 to attenuate their tumor-suppressor functions. J Biol Chem. 2023;299:105395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, et al. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med. 2013;19:1478–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rauch J, Volinsky N, Romano D, Kolch W. The secret life of kinases: functions beyond catalysis. Cell Commun Signal. 2011;9:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Patrucco E, Notte A, Barberis L, Selvetella G, Maffei A, Brancaccio M, et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell. 2004;118:375–87.

    Article  CAS  PubMed  Google Scholar 

  47. Tang F, Gao R, Jeevan-Raj B, Wyss CB, Kalathur RKR, Piscuoglio S, et al. LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function. Nat Commun. 2019;10:5755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi H, Liu C, Tan H, Li Y, Nguyen TM, Dhungana Y, et al. Hippo kinases Mst1 and Mst2 sense and amplify IL-2R-STAT5 signaling in regulatory T cells to establish stable regulatory activity. Immunity. 2018;49:899–914.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schoettler N, Rodríguez E, Weidinger S, Ober C. Advances in asthma and allergic disease genetics: Is bigger always better? J Allergy Clin Immunol. 2019;144:1495–506.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Haque TT, Weissler KA, Schmiechen Z, Laky K, Schwartz DM, Li J, et al. TGFβ prevents IgE-mediated allergic disease by restraining T follicular helper 2 differentiation. Sci Immunol. 2024;9:eadg8691.

    Article  CAS  PubMed  Google Scholar 

  51. Brogna S, Wen J. Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol. 2009;16:107–13.

    Article  CAS  PubMed  Google Scholar 

  52. Wang X, Xu C, Cai Y, Zou X, Chao Y, Yan Z, et al. CircZNF652 promotes the goblet cell metaplasia by targeting the miR-452-5p/JAK2 signaling pathway in allergic airway epithelia. J Allergy Clin Immunol. 2022;150:192–203.

    Article  CAS  PubMed  Google Scholar 

  53. Meng F, Zhou R, Wu S, Zhang Q, Jin Q, Zhou Y, et al. Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes Dev. 2016;30:1086–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Z, Liu S, Xu J, Zhang X, Han D, Liu J, et al. Adult connective tissue-resident mast cells originate from late erythro-myeloid progenitors. Immunity. 2018;49:640–53.e5.

    Article  CAS  PubMed  Google Scholar 

  55. Lin W, Su F, Gautam R, Wang N, Zhang Y, Wang X. Raf kinase inhibitor protein negatively regulates FcεRI-mediated mast cell activation and allergic response. Proc Natl Acad Sci USA. 2018;115:E9859–e68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Machiels B, Dourcy M, Xiao X, Javaux J, Mesnil C, Sabatel C, et al. A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. Nat Immunol. 2017;18:1310–20.

    Article  CAS  PubMed  Google Scholar 

  57. Yao Y, Jeyanathan M, Haddadi S, Barra NG, Vaseghi-Shanjani M, Damjanovic D, et al. Induction of autonomous memory alveolar macrophages requires T-cell help and is critical to trained immunity. Cell. 2018;175:1634–50.e17.

    Article  CAS  PubMed  Google Scholar 

  58. Abonia JP, Hallgren J, Jones T, Shi T, Xu Y, Koni P, et al. Alpha-4 integrins and VCAM-1, but not MAdCAM-1, are essential for recruitment of mast cell progenitors to the inflamed lung. Blood. 2006;108:1588–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Massoud AH, Charbonnier LM, Lopez D, Pellegrini M, Phipatanakul W, Chatila TA. An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells. Nat Med. 2016;22:1013–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu M, Tsai M, Tam SY, Jones C, Zehnder J, Galli SJ. Mast cells can promote the development of multiple features of chronic asthma in mice. J Clin Investig. 2006;116:1633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Föger N, Jenckel A, Orinska Z, Lee KH, Chan AC, Bulfone-Paus S. Differential regulation of mast cell degranulation versus cytokine secretion by the actin regulatory proteins Coronin1a and Coronin1b. J Exp Med. 2011;208:1777–87.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hsieh JT, Rathore APS, Soundarajan G, St John AL. Japanese encephalitis virus neuropenetrance is driven by mast cell chymase. Nat Commun. 2019;10:706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Prof. Xuetao Cao, Pinglong Xu, and Xiaojian Wang are gratefully acknowledged for their generous gift of mice and plasmids. We are also grateful to our colleagues in the Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, for taking care of patients and collecting the clinical data. We are grateful for the technical support of the Core Facility, Zhejiang University School of Medicine. We would also like to thank the Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province for its support. The graphical abstract was created via Biorender.com.

Funding

This work was supported by grants from the National Natural Science Foundation of China (8187060308, U22A20307, and 81930041), the Key R&D Program of Zhejiang Province (2024C03177), the Noncommunicable Chronic Diseases-National Science and Technology Major Project (2024ZD0541200), and the Natural Science Foundation of Zhejiang Province (LZ24H100001).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., Q.W., and Y.Z. conceived the project; M.L. and H.L. performed the experiments and analyzed the data with assistance from W.L., L.T., L.D., and Q.Z.; all the experiments were supervised by Y.Z., Q.W., and Y.Z.; M. H. and Z.C. provided human specimens and essential patient information; M.L. wrote the manuscript with input from all the authors; Y.Z., Q.W., and Y.Z. edited the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yiting Zhou, Qingqing Wang or Yuanyuan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, H., Lin, W. et al. MST1 bridges LYN and SHP-1 to suppress FcεRI-mediated mast cell activation and allergic responses. Cell Mol Immunol 23, 48–62 (2026). https://doi.org/10.1038/s41423-025-01374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-025-01374-8

Keywords

Search

Quick links