Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic regulation of TBK1 lactylation shapes antiviral immune responses

Abstract

The precise control of type I interferon (IFN-I) signaling is critical for effective antiviral defense and the maintenance of immune balance. In this study, we revealed a dynamic regulatory network involving lactylation–delactylation of TANK binding kinase 1 (TBK1), a pivotal kinase of IFN-I signaling, that finely tunes antiviral immune responses. Viral infection triggers the lactylation of TBK1 at K241, which is mediated by alanyl-tRNA synthetase 1 (AARS1), which potentiates IFN-I signaling to establish an antiviral state. Notably, we identified sirtuin 6 (SIRT6) as a pivotal “eraser” responsible for reversing this process by removing TBK1 lactylation. This action initiates a stringent negative feedback loop, leading to delactylated TBK1 being targeted by the E3 ligase SIAH2 for K48-linked polyubiquitination and subsequent selective autophagic degradation via p62. In vivo experiments revealed that myeloid-specific deletion of Sirt6 in mice resulted in sustained TBK1 lactylation and increased IFN-I production during VSV infection, ultimately improving survival. This intricate regulatory circuit not only maintains an appropriate IFN-I response to prevent excessive immune activation but also highlights the potential of targeting lactylation as a novel therapeutic strategy for chronic infections and autoimmune diseases associated with TBK1 dysregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Roers A, Hiller B, Hornung V. Recognition of endogenous nucleic acids by the innate immune system. Immunity. 2016;44:739–54.

    Article  PubMed  CAS  Google Scholar 

  2. Choi Y, Bowman JW, Jung JU. Autophagy during viral infection - a double-edged sword. Nat Rev Microbiol. 2018;16:341–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Tian Y, Wang M-L, Zhao J. Crosstalk between autophagy and type i interferon responses in innate antiviral immunity. Viruses. 2019;11:132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chen K, Liu J, Cao X. Regulation of type I interferon signaling in immunity and inflammation: a comprehensive review. J Autoimmun. 2017;83:1–11.

    Article  PubMed  Google Scholar 

  5. Lei C-Q, Zhong B, Zhang Y, Zhang J, Wang S, Shu H-B. Glycogen synthase kinase 3β regulates IRF3 transcription factor-mediated antiviral response via activation of the kinase TBK1. Immunity. 2010;33:878–89.

    Article  PubMed  CAS  Google Scholar 

  6. Liu Q, Gu T, Su L-Y, Jiao L, Qiao X, Xu M, et al. GSNOR facilitates antiviral innate immunity by restricting TBK1 cysteine S-nitrosation. Redox Biol. 2021;47:102172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tang J-L, Yang Q, Xu C-H, Zhao H, Liu Y-L, Liu C-Y, et al. Histone deacetylase 3 promotes innate antiviral immunity through deacetylation of TBK1. Protein Cell. 2021;12:261–78.

    Article  PubMed  CAS  Google Scholar 

  8. Li X, Zhang Q, Ding Y, Liu Y, Zhao D, Zhao K, et al. Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat Immunol. 2016;17:806–15.

    Article  PubMed  CAS  Google Scholar 

  9. Zhao W. Negative regulation of TBK1-mediated antiviral immunity. FEBS Lett. 2013;587:542–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Liu J, Qian C, Cao X. Post-translational modification control of innate immunity. Immunity. 2016;45:15–30.

    Article  PubMed  Google Scholar 

  11. Saul VV, Niedenthal R, Pich A, Weber F, Schmitz ML. SUMO modification of TBK1 at the adaptor-binding C-terminal coiled-coil domain contributes to its antiviral activity. Biochim Biophys Acta. 2015;1853:136–43.

    Article  PubMed  CAS  Google Scholar 

  12. Yan Z, Wu H, Liu H, Zhao G, Zhang H, Zhuang W, et al. The protein arginine methyltransferase PRMT1 promotes TBK1 activation through asymmetric arginine methylation. Cell Rep. 2021;36:109731.

    Article  PubMed  CAS  Google Scholar 

  13. Meng Z, Xu R, Xie L, Wu Y, He Q, Gao P, et al. A20/Nrdp1 interaction alters the inflammatory signaling profile by mediating K48- and K63-linked polyubiquitination of effectors MyD88 and TBK1. J Biol Chem. 2021;297:100811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Parvatiyar K, Barber GN, Harhaj EW. TAX1BP1 and A20 inhibit antiviral signaling by targeting TBK1-IKKi kinases. J Biol Chem. 2010;285:14999–5009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Friedman CS, O’Donnell MA, Legarda-Addison D, Ng A, Cárdenas WB, Yount JS, et al. The tumor suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep. 2008;9:930–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Xie W, Jin S, Zhang C, Yang S, Wu Y, Zhao Y, et al. Selective autophagy controls the stability of TBK1 via NEDD4 to balance host defense. Cell Death Differ. 2022;29:40–53.

    Article  PubMed  CAS  Google Scholar 

  17. Charoenthongtrakul S, Gao L, Harhaj EW. The NLRP4-DTX4 axis: a key suppressor of TBK1 and innate antiviral signaling. Cell Mol Immunol. 2012;9:431–3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hu Z, Zhang Y, Xie Y, Yang J, Tang H, Fan B, et al. The toxoplasma effector GRA4 hijacks Host TBK1 to oppositely regulate anti-T. Gondii immunity and tumor immunotherapy. Adv Sci. 2024;11:e2400952.

    Article  Google Scholar 

  19. Zhang M, Wang L, Zhao X, Zhao K, Meng H, Zhao W, et al. TRAF-interacting protein (TRIP) negatively regulates IFN-β production and antiviral response by promoting proteasomal degradation of TANK-binding kinase 1. J Exp Med. 2012;209:1703–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lin M, Zhao Z, Yang Z, Meng Q, Tan P, Xie W, et al. USP38 inhibits type I interferon signaling by editing TBK1 ubiquitination through NLRP4 signalosome. Mol Cell. 2016;64:267–81.

    Article  PubMed  CAS  Google Scholar 

  21. Hu Z, Xie Y, Lu J, Yang J, Zhang J, Jiang H, et al. VANGL2 inhibits antiviral IFN-I signaling by targeting TBK1 for autophagic degradation. Sci Adv. 2023;9:eadg2339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jing F, Zhang J, Zhang H, Li T. Unlocking the multifaceted molecular functions and diverse disease implications of lactylation. Biol Rev Camb Philos Soc. 2025;100:172–89.

    Article  PubMed  Google Scholar 

  23. Li H, Sun L, Gao P, Hu H. Lactylation in cancer: current understanding and challenges. Cancer Cell. 2024;42:1803–7.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Li H, Liu C, Li R, Zhou L, Ran Y, Yang Q, et al. AARS1 and AARS2 sense L-lactate to regulate cGAS as global lysine lactyltransferases. Nature. 2024;634:1229–37.

    Article  PubMed  CAS  Google Scholar 

  26. Hu Y, He Z, Li Z, Wang Y, Wu N, Sun H, et al. Lactylation: the novel histone modification influence on gene expression, protein function, and disease. Clin Epigenetics. 2024;16:72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, et al. Lactate and lactylation in cancer. Signal Transduct Target Ther. 2025;10:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zong Z, Ren J, Yang B, Zhang L, Zhou F. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol. 2025;27:563–74.

    Article  PubMed  CAS  Google Scholar 

  29. Wang S, Lv H, Zhou F. AARS1 and AARS2, the L-lactate sensors and universal lactyltransferases. Sci Bull. 2025;70:1547–9.

    Article  CAS  Google Scholar 

  30. Zong Z, Xie F, Wang S, Wu X, Zhang Z, Yang B, et al. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell. 2024;187:2375–.e33.

    Article  PubMed  CAS  Google Scholar 

  31. Ju J, Zhang H, Lin M, Yan Z, An L, Cao Z, et al. The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. J Clin Invest. 2024;134:e174587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Li X, Zhang C, Mei Y, Zhong W, Fan W, Liu L, et al. Irinotecan alleviates chemoresistance to anthracyclines through the inhibition of AARS1-mediated BLM lactylation and homologous recombination repair. Signal Transduct Target Ther. 2025;10:214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lin J, Yin Y, Cao J, Zhang Y, Chen J, Chen R, et al. NUDT21 lactylation reprograms alternative polyadenylation to promote cuproptosis resistance. Cell Discov. 2025;11:52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Xing Z, Yang T, Li X, Xu H, Hong Y, Shao S, et al. High-glucose-associated YTHDC1 lactylation reduces the sensitivity of bladder cancer to enfortumab vedotin therapy. Cell Rep. 2025;44:115545.

    Article  PubMed  CAS  Google Scholar 

  35. Du R, Gao Y, Yan C, Ren X, Qi S, Liu G, et al. Sirtuin 1/sirtuin 3 are robust lysine delactylases and sirtuin 1-mediated delactylation regulates glycolysis. iScience. 2024;27:110911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zu H, Li C, Dai C, Pan Y, Ding C, Sun H, et al. SIRT2 functions as a histone delactylase and inhibits the proliferation and migration of neuroblastoma cells. Cell Discov. 2022;8:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jin J, Bai L, Wang D, Ding W, Cao Z, Yan P, et al. SIRT3-dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep. 2023;24:e56052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Iozzo M, Pardella E, Giannoni E, Chiarugi P. The role of protein lactylation: a kaleidoscopic posttranslational modification in cancer. Mol Cell. 2025;85:1263–79.

    Article  PubMed  CAS  Google Scholar 

  39. Nickel GA, Pederson NJ, Faheem, Yang Z, Bulf J, Diehl KL. Sirtuin 6 is a histone delactylase. J Biol Chem. 2025;301:110795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Li W, Zhou J, Gu Y, Chen Y, Huang Y, Yang J, et al. Lactylation of RNA m6A demethylase ALKBH5 promotes innate immune response to DNA herpesviruses and mpox virus. Proc Natl Acad Sci USA. 2024;121:e2409132121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zou L, Liu Z, Peng L, Wu B, Huang Y, Wen X, et al. Delactylation of H3K9 by Sirtuin6 inhibits MGMT transcription and reverses temozolomide resistance in glioblastoma. Int J Biol Macromol. 2025;327:147332.

    Article  PubMed  CAS  Google Scholar 

  42. Hegazy M, Cohen-Barak E, Koetsier JL, Najor NA, Arvanitis C, Sprecher E, et al. Proximity ligation assay for detecting protein‒protein interactions and protein modifications in cells and tissues in situ. Curr Protoc Cell Biol. 2020;89:e115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Karaca E, Lewicki J, Hermanson O. Oxygen-dependent acetylation and dimerization of the corepressor CtBP2 in neural stem cells. Exp Cell Res. 2015;332:128–35.

    Article  PubMed  CAS  Google Scholar 

  44. Dai C, Tang Y, Yang H, Zheng J. YTHDC1 lactylation regulates its phase separation to enhance target mRNA stability and promote RCC progression. Mol Cell. 2025;85:2733–.e7.

    Article  PubMed  CAS  Google Scholar 

  45. Lin Z, Long F, Liu J, Kang R, Klionsky DJ, Kroemer G, et al. Metabolic reprogramming promotes apoptosis resistance in acute lymphoblastic leukemia through CASP3 lactylation. Mol Cancer. 2025;24:204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Gao R, Li Y, Xu Z, Zhang F, Xu J, Hu Y, et al. Mitochondrial pyruvate carrier 1 regulates fatty acid synthase lactylation and mediates treatment of nonalcoholic fatty liver disease. Hepatology. 2023;78:1800–15.

    Article  PubMed  Google Scholar 

  47. Tian Q, Li J, Wu B, Pang Y, He W, Xiao Q, et al. APP lysine 612 lactylation ameliorates amyloid pathology and memory decline in Alzheimer’s disease. J Clin Invest. 2025;135:e184656.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yu F, Meng Y, Wang X, Chen J, He J, Yi X, et al. Protein lactylation of citrate synthase promotes the AKI-CKD transition by activating the NLRP3 inflammasome. Cell Rep. 2025;44:116084.

    Article  PubMed  CAS  Google Scholar 

  49. Geng A, Tang H, Huang J, Qian Z, Qin N, Yao Y, et al. The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2. Nucleic Acids Res. 2020;48:9181–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332:1443–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Guo Z, Li P, Ge J, Li H. SIRT6 in aging, metabolism, inflammation and cardiovascular diseases. Aging Dis. 2022;13:1787–822.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu G, Chen H, Liu H, Zhang W, Zhou J. Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev. 2021;41:1089–137.

    Article  PubMed  Google Scholar 

  53. Chang AR, Ferrer CM, Mostoslavsky R. SIRT6, a mammalian deacylase with multitasking abilities. Physiol Rev. 2020;100:145–69.

    Article  PubMed  CAS  Google Scholar 

  54. Hou T, Tian Y, Cao Z, Zhang J, Feng T, Tao W, et al. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation. Mol Cell. 2022;82:4099–.e9.

    Article  PubMed  CAS  Google Scholar 

  55. Zhao X, Di Q, Yu J, Quan J, Xiao Y, Zhu H, et al. USP19 (ubiquitin specific peptidase 19) promotes TBK1 (TANK-binding kinase 1) degradation via chaperone-mediated autophagy. Autophagy. 2022;18:891–908.

    Article  PubMed  CAS  Google Scholar 

  56. Xie W, Zhang C, Wang Z, Chen H, Gu T, Zhou T, et al. ATG4B antagonizes antiviral immunity by GABARAP-directed autophagic degradation of TBK1. Autophagy. 2023;19:2853–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Jiao Y, Zhao P, Xu L-D, Yu J-Q, Cai H-L, Zhang C, et al. Enteric coronavirus nsp2 is a virulence determinant that recruits NBR1 for autophagic targeting of TBK1 to diminish the innate immune response. Autophagy. 2024;20:1762–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Romao S, Münz C. LC3-associated phagocytosis. Autophagy. 2014;10:526–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Khaminets A, Behl C, Dikic I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 2016;26:6–16.

    Article  PubMed  CAS  Google Scholar 

  60. Isogai S, Morimoto D, Arita K, Unzai S, Tenno T, Hasegawa J, et al. Crystal structure of the ubiquitin-associated (UBA) domain of p62 and its interaction with ubiquitin. J Biol Chem. 2011;286:31864–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Squair DR, Virdee S. A new dawn beyond lysine ubiquitination. Nat Chem Biol. 2022;18:802–11.

    Article  PubMed  CAS  Google Scholar 

  62. Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–57.

    Article  PubMed  CAS  Google Scholar 

  63. Zheng Q, Hou J, Zhou Y, Yang Y, Xie B, Cao X. Siglec1 suppresses antiviral innate immune response by inducing TBK1 degradation via the ubiquitin ligase TRIM27. Cell Res. 2015;25:1121–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wang C, Chen T, Zhang J, Yang M, Li N, Xu X, et al. The E3 ubiquitin ligase Nrdp1 ‘preferentially’ promotes TLR-mediated production of type I interferon. Nat Immunol. 2009;10:744–52.

    Article  PubMed  CAS  Google Scholar 

  65. Song G, Liu B, Li Z, Wu H, Wang P, Zhao K, et al. E3 ubiquitin ligase RNF128 promotes innate antiviral immunity through K63-linked ubiquitination of TBK1. Nat Immunol. 2016;17:1342–51.

    Article  PubMed  CAS  Google Scholar 

  66. Cui J, Li Y, Zhu L, Liu D, Songyang Z, Wang HY, et al. NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol. 2012;13:387–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhao X, Di Q, Chen J, Ling J, Quan J, Zhao Z, et al. The USP43/RNF2 axis negatively regulates antiviral innate immunity by promoting TBK1 ubiquitination and degradation. Cell Death Differ. 2025;32:1806–19.

    Article  PubMed  CAS  Google Scholar 

  68. Dong B, Ding C, Xiang H, Zheng J, Li X, Xue W, et al. USP7 accelerates FMR1-mediated ferroptosis by facilitating TBK1 ubiquitination and DNMT1 deubiquitination after renal ischemia‒reperfusion injury. Inflamm Res. 2022;71:1519–33.

    Article  PubMed  CAS  Google Scholar 

  69. Cai J, Chen H-Y, Peng S-J, Meng J-L, Wang Y, Zhou Y, et al. USP7-TRIM27 axis negatively modulates antiviral type I IFN signaling. FASEB J. 2018;32:5238–49.

    Article  PubMed  CAS  Google Scholar 

  70. Rao K, Zhang X, Luo Y, Xia Q, Jin Y, He J. Lactylation orchestrates ubiquitin-independent degradation of cGAS and promotes tumor growth. Cell Rep. 2025;44:115441.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang J, Ji H, Liu M, Zheng M, Wen Z, Shen H. Mitochondrial DNA programs lactylation of cGAS to induce IFN responses in patients with systemic lupus erythematosus. J Immunol. 2024;213:795–807.

    Article  PubMed  CAS  Google Scholar 

  72. Venne AS, Kollipara L, Zahedi RP. The next level of complexity: crosstalk of posttranslational modifications. Proteomics. 2014;14:513–24.

    Article  PubMed  CAS  Google Scholar 

  73. Xu H-D, Wang L-N, Wen P-P, Shi S-P, Qiu J-D. Site-specific systematic analysis of lysine modification crosstalk. Proteomics. 2018;18:e1700292.

    Article  PubMed  Google Scholar 

  74. Wang H, Hu D, Cheng Y, Gao Q, Liu K, Mani NL, et al. Succinate drives gut inflammation by promoting FOXP3 degradation through a molecular switch. Nat Immunol. 2025;26:866–80.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wu XY, Zhang ZW, Chen SN, Pang AN, Peng XY, Li N, et al. SIRT6 positively regulates antiviral response in a bony fish, the Chinese perch Siniperca chuatsi. Fish Shellfish Immunol. 2024;150:109662.

    Article  PubMed  CAS  Google Scholar 

  76. Yuan S, Liao G, Zhang M, Zhu Y, Xiao W, Wang K, et al. Multiomics interrogation into HBV (Hepatitis B virus)-host interaction reveals novel coding potential in human genome, and identifies canonical and noncanonical proteins as host restriction factors against HBV. Cell Discov. 2021;7:105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hu M, Armstrong N, Seto E, Li W, Zhu F, Wang PC, et al. Sirtuin 6 attenuates kaposi’s sarcoma-associated herpesvirus reactivation by suppressing Ori-Lyt activity and expression of RTA. J Virol. 2019;93:e02200-18.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Jun Cui (Sun Yat-sen University) for providing plasmids for NDP52, OPTN, NIX, TOLLIP, NBR1, and autophagy-related KO cells. This work was supported by the National Natural Science Foundation of China (82572009, 82371761 and 82171741), the National Key R&D Program of China (2024YFC2309700), the Guangdong Basic and Applied Basic Research Foundation (2023A1515010421), and the Science and Technology Program of Guangzhou (2025A04J7166) to XY.

Author information

Authors and Affiliations

Authors

Contributions

YX, YZ and WP performed the investigation and the analysis. LZ, ZHu, HJ, KZ, JL, ST, ZHan, ZX, ZL and WL provided technical help. XY provided resources, conceived the idea, and directed the research. YX and XY wrote the manuscript.

Corresponding author

Correspondence to Xiao Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Zhang, Y., Peng, W. et al. Dynamic regulation of TBK1 lactylation shapes antiviral immune responses. Cell Mol Immunol (2026). https://doi.org/10.1038/s41423-025-01385-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41423-025-01385-5

Keywords

Search

Quick links