Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

NPG Asia Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npg asia materials
  3. review articles
  4. article
Superelasticity in micro/nanostructured materials
Download PDF
Download PDF
  • Review Article
  • Open access
  • Published: 28 January 2026

Superelasticity in micro/nanostructured materials

  • Fucheng Li1,
  • Shuai Ren2,3,
  • Weijie Xie  ORCID: orcid.org/0009-0001-9292-71311,
  • Yanhui Liu  ORCID: orcid.org/0000-0002-7546-33711,4 &
  • …
  • Yong Yang  ORCID: orcid.org/0000-0002-0491-82953,5,6 

NPG Asia Materials , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Structural properties
  • Synthesis and processing

Abstract

Achieving reversible strain greater than 1%, known as superelasticity, is highly desirable for practical applications across diverse fields, including medical care, transportation, and daily life. While conventional rigid materials, such as metals and ceramics, exhibit limited elastic deformation, advanced materials like amorphous alloys, high entropy alloys, and shape memory alloys demonstrate an enhanced elastic strain limit (≥1%) through mechanisms such as structural disordering, lattice distortion, or phase transformation. Further improvements in recoverable deformation can be achieved by incorporating micro/nanostructures into both conventional and advanced rigid materials. In this review, we systematically explore strategies for micro/nanostructuring rigid materials, including metals and covalent materials, to enhance their superelastic properties. Firstly, we examine the size effects on the elasticity or pseudoelasticity of rigid materials, with a particular focus on the superelastic behavior of small-sized materials. Secondly, we discuss how small-sized superelastic materials can serve as structural units to design geometrically complex micro/nanostructures and micro/nanocomposites, highlighting examples that exhibit exceptional reversible deformation capabilities. Finally, we review the potential applications of micro/nanostructured superelastic materials in nanotechnology and structural engineering, underscoring their transformative potential in these fields.

Similar content being viewed by others

A high-entropy alloy showing gigapascal superelastic stress and nearly temperature-independent modulus

Article Open access 31 January 2025

Self-supervised optimization of random material microstructures in the small-data regime

Article Open access 21 March 2022

Hyper-Range Amorphization Unlocks Superior Damage Tolerance in Alloys

Article Open access 24 November 2025

References

  1. Sun, L., Gibson, R. F., Gordaninejad, F. & Suhr, J. Energy absorption capability of nanocomposites: a review. Compos. Sci. Technol. 69, 2392–2409 (2009).

    Google Scholar 

  2. Juan, J. S., Nó, M. L. & Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 4, 415–419 (2009).

    Google Scholar 

  3. Wilson, S. A. et al. New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng.: R: Rep. 56, 1–129 (2007).

    Google Scholar 

  4. Nie, Z., Kwak, J. W., Han, M. & Rogers, J. A. Mechanically active materials and devices for bio-interfaced pressure sensors—a review. Adv. Mater. 36, 2205609 (2024).

    Google Scholar 

  5. Morgan, N. B. Medical shape memory alloy applications—the market and its products. Mater. Sci. Eng.: A 378, 16–23 (2004).

    Google Scholar 

  6. Zheng, W. et al. Realizing reversible phase transformation of shape memory ceramics constrained in aluminum. Nat. Commun. 14, 7103 (2023).

    Google Scholar 

  7. Ashby, M. & Greer, A. L. Metallic glasses as structural materials. Scr. Mater. 54, 321–326 (2006).

    Google Scholar 

  8. Yue, Y., Liu, P., Zhang, Z., Han, X. & Ma, E. Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 11, 3151–3155 (2011).

    Google Scholar 

  9. Tian, L. et al. Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 3, 609 (2012).

    Google Scholar 

  10. Zhang, H. et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci. Adv. 2, e1501382 (2016).

    Google Scholar 

  11. Jani, J. M., Leary, M., Subic, A. & Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. (1980–2015) 56, 1078–1113 (2014).

    Google Scholar 

  12. Schlom, D. G. et al. Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118–130 (2014).

    Google Scholar 

  13. Pang, E. L., Olson, G. B. & Schuh, C. A. Low-hysteresis shape-memory ceramics designed by multimode modelling. Nature 610, 491–495 (2022).

    Google Scholar 

  14. Cheng, T., Zhang, Y., Lai, W.-Y. & Huang, W. Stretchable Thin-film Electrodes For Flexible Electronics With High Deformability And Stretchability. Adv. Mater. 27, 3349–3376 (2015).

    Google Scholar 

  15. Tanaka, Y. et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327, 1488–1490 (2010).

    Google Scholar 

  16. Chen, H. et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat. Mater. 19, 712–718 (2020).

    Google Scholar 

  17. Xu, S. et al. Non-Hookean large elastic deformation in bulk crystalline metals. Nat. Commun. 13, 5307 (2022).

    Google Scholar 

  18. Odaira, T. et al. Flexible and tough superelastic Co–Cr alloys for biomedical applications. Adv. Mater. 34, 2202305 (2022).

    Google Scholar 

  19. Otsuka, K., Sakamoto, H. & Shimizu, K. Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys. Acta Metall. 27, 585–601 (1979).

    Google Scholar 

  20. Dang, P. et al. Ultrahigh Elastic Energy Storage In Nanocrystalline Alloys With Martensite Nanodomains. Adv. Mater. 36, 2408275 (2024).

    Google Scholar 

  21. Johnson, W. & Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    Google Scholar 

  22. He, Q. et al. A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 602, 251–257 (2022).

    Google Scholar 

  23. Hao, S. et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science 339, 1191–1194 (2013).

    Google Scholar 

  24. Li, F. et al. Oxidation-induced superelasticity in metallic glass nanotubes. Nat. Mater. 23, 52–57 (2024).

    Google Scholar 

  25. Gao, P. X., Mai, W. & Wang, Z. L. Superelasticity and nanofracture mechanics of ZnO nanohelices. Nano Lett. 6, 2536–2543 (2006).

    Google Scholar 

  26. Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    Google Scholar 

  27. Shyu, T. C. et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 14, 785–789 (2015).

    Google Scholar 

  28. Dang, C. et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science 371, 76–78 (2021).

    Google Scholar 

  29. Si, Y., Yu, J., Tang, X., Ge, J. & Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014).

    Google Scholar 

  30. Si, Y. et al. Ultralight Biomass-Derived Carbonaceous Nanofibrous Aerogels with Superelasticity and High Pressure-Sensitivity. Adv. Mater. 28, 9512–9518 (2016).

    Google Scholar 

  31. Li, L. et al. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 11, 62 (2020).

    Google Scholar 

  32. Liu, H. et al. Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nat. Commun. 13, 3420 (2022).

    Google Scholar 

  33. Si, Y., Wang, X., Dou, L., Yu, J. & Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4, eaas8925 (2018).

    Google Scholar 

  34. Latorre, E. et al. Active superelasticity in three-dimensional epithelia of controlled shape. Nature 563, 203–208 (2018).

    Google Scholar 

  35. Otsuka K., Wayman C. M. Shape memory materials: Cambridge University Press (1999).

  36. Tahara, M., Kim, H. Y., Inamura, T., Hosoda, H. & Miyazaki, S. Lattice modulation and superelasticity in oxygen-added β-Ti alloys. Acta Mater. 59, 6208–6218 (2011).

    Google Scholar 

  37. Johnson, W. L. & Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    Google Scholar 

  38. Zhang J. Achieving 5.9% elastic strain in kilograms of metallic glasses: Nanoscopic strain engineering goes macro. Materials Today. 2020.

  39. Saito, T. et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464–467 (2003).

    Google Scholar 

  40. Talling, R. J., Dashwood, R. J., Jackson, M. & Dye, D. On the mechanism of superelasticity in Gum metal. Acta Mater. 57, 1188–1198 (2009).

    Google Scholar 

  41. Sypek, J. T. et al. Superelasticity and cryogenic linear shape memory effects of CaFe2As2. Nat. Commun. 8, 1083 (2017).

    Google Scholar 

  42. Lai, A., Du, Z., Gan, C. L. & Schuh, C. A. Shape memory and superelastic ceramics at small scales. Science 341, 1505–1508 (2013).

    Google Scholar 

  43. Wang C. et al. Reversible shuffle twinning yields anisotropic tensile superelasticity in ceramic GeSe. Nat. Nanotechnol.1–8. (2025).

  44. Seo J., Kim Y. C. & Hu J. W. Pilot study for investigating the cyclic behavior of slit damper systems with recentering Shape Memory Alloy (SMA) bending bars used for seismic restrainers. Appl. Sci. 2015. p. 187–208.

  45. Otsuka, K. & Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005).

    Google Scholar 

  46. Xia, J. et al. Iron-based superelastic alloys with near-constant critical stress temperature dependence. Science 369, 855–858 (2020).

    Google Scholar 

  47. Lecce, L. Shape memory alloy engineering: for aerospace, structural and biomedical applications: Elsevier (2014).

  48. Otsuka, K. & Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005).

    Google Scholar 

  49. Sarkar, S., Ren, X. & Otsuka, K. Evidence for Strain Glass in the Ferroelastic-Martensitic System Ti50-xNi50+x. Phys. Rev. Lett. 95, 205702 (2005).

    Google Scholar 

  50. Wang, Y., Ren, X. & Otsuka, K. Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97, 225703 (2006).

    Google Scholar 

  51. Ren, X. Strain glass and ferroic glass – Unusual properties from glassy nano-domains. Phys. Status Solidi (B) 251, 1982–1992 (2014).

    Google Scholar 

  52. Wang, Y., Ren, X., Otsuka, K. & Saxena, A. Evidence for broken ergodicity in strain glass. Phys. Rev. B 76, 132201 (2007).

    Google Scholar 

  53. Zhou, Y. et al. Direct Evidence For Local Symmetry Breaking During A Strain Glass Transition. Phys. Rev. Lett. 112, 025701 (2014).

    Google Scholar 

  54. Rao, W.-F., Wuttig, M. & Khachaturyan, A. G. Giant nonhysteretic responses of two-phase nanostructured alloys. Phys. Rev. Lett. 106, 105703 (2011).

    Google Scholar 

  55. Rao, W.-F. & Khachaturyan, A. G. Giant quasi-elastic responses in decomposed two-phase nanodispersions: Phase field modeling. Acta Mater. 60, 443–456 (2012).

    Google Scholar 

  56. Wang, Y. et al. Strain glass transition in a multifunctional β-type Ti alloy. Sci. Rep. 4, 3995 (2014).

    Google Scholar 

  57. Wang, D. et al. Superelasticity of slim hysteresis over a wide temperature range by nanodomains of martensite. Acta Mater. 66, 349–359 (2014).

    Google Scholar 

  58. Ren, S. et al. Low-field-triggered large magnetostriction in Iron-Palladium strain glass alloys. Phys. Rev. Lett. 119, 125701 (2017).

    Google Scholar 

  59. Liu, C. et al. A lightweight strain glass alloy showing nearly temperature-independent low modulus and high strength. Nat. Mater. 21, 1003–1007 (2022).

    Google Scholar 

  60. Xu, Z. et al. A polymer-like ultrahigh-strength metal alloy. Nature 633, 575–581 (2024).

    Google Scholar 

  61. Li, S. et al. Superelasticity in BCC nanowires by a reversible twinning mechanism. Phys. Rev. B—Condens. Matter Mater. Phys. 82, 205435 (2010).

    Google Scholar 

  62. Wu, F., Liu, Y., Si, Y., Yu, J. & Ding, B. Multiphase ceramic nanofibers with super-elasticity from− 196–1600 °C. Nano Today 44, 101455 (2022).

    Google Scholar 

  63. Cao, Z., Zhao, W., Liu, Q., Liang, A. & Zhang, J. Super-elasticity and ultralow friction of hydrogenated fullerene-like carbon films: associated with the size of graphene sheets. Adv. Mater. Interfaces 5, 1701303 (2018).

    Google Scholar 

  64. Banerjee, A. et al. Ultralarge elastic deformation of nanoscale diamond. Science 360, 300–302 (2018).

    Google Scholar 

  65. Hsin, C. L. et al. Elastic properties and buckling of silicon nanowires. Adv. Mater. 20, 3919–3923 (2008).

    Google Scholar 

  66. Wang, J. et al. Strong Hall–Petch type behavior in the elastic strain limit of nanotwinned gold nanowires. Nano Lett. 15, 3865–3870 (2015).

    Google Scholar 

  67. Cuenot, S., Frétigny, C., Demoustier-Champagne, S. & Nysten, B. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004).

    Google Scholar 

  68. Yao H., Yun G., Bai N. & Li J. Surface elasticity effect on the size-dependent elastic property of nanowires. J. Appl. Phys. 111. (2012).

  69. Wang T. et al. Low-cost scalable production of freestanding two-dimensional metallic nanosheets by polymer surface buckling enabled exfoliation. Cell Rep. Phys. Sci. 1. (2020).

  70. Falvo, M. R. et al. Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997).

    Google Scholar 

  71. Li, J., Shan, Z. & Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 39, 108–114 (2014).

    Google Scholar 

  72. Seo, M. H., Yoo, J. Y., Jo, M. S. & Yoon, J. B. Geometrically structured nanomaterials for nanosensors, NEMS, and nanosieves. Adv. Mater. 32, 1907082 (2020).

    Google Scholar 

  73. Brenner, S. S. Growth and properties of “Whiskers. Science 128, 569–575 (1958).

    Google Scholar 

  74. Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010).

    Google Scholar 

  75. Richter, G. et al. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048–3052 (2009).

    Google Scholar 

  76. Wang, L. et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 4, 2413 (2013).

    Google Scholar 

  77. Chu, M., Sun, Y., Aghoram, U. & Thompson, S. E. Strain: A solution for higher carrier mobility in nanoscale MOSFETs. Annu. Rev. Mater. Res. 39, 203–229 (2009).

    Google Scholar 

  78. You, B. et al. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31, 1807001 (2019).

    Google Scholar 

  79. Eisner, R. Tensile tests on silicon whiskers. Acta Metall. 3, 414–415 (1955).

    Google Scholar 

  80. Pearson, G., Read, J.rW. & Feldmann, W. L. Deformation and fracture of small silicon crystals. Acta Metall. 5, 181–191 (1957).

    Google Scholar 

  81. Hoffmann, S. et al. Measurement of the bending strength of vapor− liquid− solid grown silicon nanowires. Nano Lett. 6, 622–625 (2006).

    Google Scholar 

  82. Li, X., Ono, T., Wang, Y. & Esashi, M. Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus. Appl. Phys. Lett. 83, 3081–3083 (2003).

    Google Scholar 

  83. Zhu, Y., Xu, F., Qin, Q., Fung, W. Y. & Lu, W. Mechanical properties of vapor− liquid− solid synthesized silicon nanowires. Nano Lett. 9, 3934–3939 (2009).

    Google Scholar 

  84. May, P. W. The new diamond age? Science 319, 1490–1491 (2008).

    Google Scholar 

  85. Nie, A. et al. Approaching diamond’s theoretical elasticity and strength limits. Nat. Commun. 10, 5533 (2019).

    Google Scholar 

  86. Ibarra A., Caillard D., San Juan J. & Nó M. L. Martensite nucleation on dislocations in Cu–Al–Ni shape memory alloys. Appl. Phys. Lett. 90. (2007).

  87. San Juan, J., Nó, M. L. & Schuh, C. A. Superelasticity and shape memory in micro-and nanometer-scale pillars. Adv. Mater. 20, 272–278 (2008).

    Google Scholar 

  88. Zheng, X. et al. Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016).

    Google Scholar 

  89. Cheng, Y. Q. & Ma, E. Intrinsic shear strength of metallic glass. Acta Mater. 59, 1800–1807 (2011).

    Google Scholar 

  90. Jiang, Q. K. et al. Super elastic strain limit in metallic glass films. Sci. Rep. 2, 852 (2012).

    Google Scholar 

  91. Jiang, Q. et al. The effect of size on the elastic strain limit in Ni60Nb40 glassy films. Acta Mater. 61, 4689–4695 (2013).

    Google Scholar 

  92. Mavrič, A., Valant, M., Cui, C. & Wang, Z. M. Advanced applications of amorphous alumina: From nano to bulk. J. Non-Cryst. Solids 521, 119493 (2019).

    Google Scholar 

  93. Zheng, K. et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 1, 24 (2010).

    Google Scholar 

  94. Frankberg, E. J. et al. Exceptional Microscale Plasticity in Amorphous Aluminum Oxide at Room Temperature. Adv. Mater. 35, 2303142 (2023).

    Google Scholar 

  95. Kohli, J. T., Hubert, M., Youngman, R. E. & Morse, D. L. A Corning perspective on the future of technical glass in our evolving world. Int. J. Appl. Glass Sci. 13, 292–307 (2022).

    Google Scholar 

  96. Waitz, T., Kazykhanov, V. & Karnthaler, H. P. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 52, 137–147 (2004).

    Google Scholar 

  97. Fu, Y. Q. et al. On the lower thickness boundary of sputtered TiNi films for shape memory application. Thin Solid Films 515, 80–86 (2006).

    Google Scholar 

  98. Qiao, L. & Radovitzky, R. Investigation of the role of Ti oxide layer in the size-dependent superelasticity of NiTi pillars: Modeling and simulation. Acta Mater. 61, 6213–6221 (2013).

    Google Scholar 

  99. Ibarra, A., San Juan, J., Bocanegra, E., Caillard, D. & Nó, M. In situ” and “Post-mortem” TEM study of the super-elastic effect in Cu–Al–Ni shape memory alloys. Mater. Sci. Eng.: A 438, 787–790 (2006).

    Google Scholar 

  100. Gómez-Cortés, J. F. et al. Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale. Nat. Nanotechnol. 12, 790–796 (2017).

    Google Scholar 

  101. Gómez-Cortés, J. F. et al. Ultrahigh superelastic damping at the nano-scale: A robust phenomenon to improve smart MEMS devices. Acta Mater. 166, 346–356 (2019).

    Google Scholar 

  102. REYES-MOREL, P. E., CHERNG, J. S. & Chen, I. W. Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals: II, pseudoelasticity and shape memory effect. J. Am. Ceram. Soc. 71, 648–657 (1988).

    Google Scholar 

  103. Du, Z. et al. Size effects and shape memory properties in ZrO2 ceramic micro-and nano-pillars. Scr. Mater. 101, 40–43 (2015).

    Google Scholar 

  104. Zhang, J. et al. A nanoscale shape memory oxide. Nat. Commun. 4, 2768 (2013).

    Google Scholar 

  105. Tian, L. et al. Tailoring centripetal metamaterial with superelasticity and negative Poisson’s ratio for organic solvents adsorption. Sci. Adv. 8, eabo1014 (2022).

    Google Scholar 

  106. Zhao, K. et al. Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures. Sci. Adv. 5, eaav2589 (2019).

    Google Scholar 

  107. Yin, J., Li, X., Zhou, J. & Guo, W. Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano Lett. 13, 3232–3236 (2013).

    Google Scholar 

  108. Zhang, Q. et al. Hyperbolically patterned 3D graphene metamaterial with negative Poisson’s ratio and superelasticity. Adv. Mater. 28, 2229–2237 (2016).

    Google Scholar 

  109. Wang, Y., Zhu, Y., Wang, F., Liu, X. & Wu, H. Super-elasticity and deformation mechanism of three-dimensional pillared graphene network structures. Carbon 118, 588–596 (2017).

    Google Scholar 

  110. Zhang, Q. et al. Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Adv. Mater. 29, 1605506 (2017).

    Google Scholar 

  111. Xue, Y. et al. Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures. ACS Nano 11, 558–568 (2017).

    Google Scholar 

  112. Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).

    Google Scholar 

  113. Jang, D., Meza, L. R., Greer, F. & Greer, J. R. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat. Mater. 12, 893–898 (2013).

    Google Scholar 

  114. Lee, S.-W., Jafary-Zadeh, M., Chen, D. Z., Zhang, Y.-W. & Greer, J. R. Size effect suppresses brittle failure in hollow Cu60Zr40 metallic glass nanolattices deformed at cryogenic temperatures. Nano Lett. 15, 5673–5681 (2015).

    Google Scholar 

  115. Chen, J.-K., Chen, W.-T., Cheng, C.-C., Yu, C.-C. & Chu, J. P. Metallic glass nanotube arrays: Preparation and surface characterizations. Mater. Today 21, 178–185 (2018).

    Google Scholar 

  116. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Google Scholar 

  117. Wang, T., Zhang, Z., Park, M., Yu, Q. & Yang, Y. Etching-free ultrafast fabrication of self-rolled metallic nanosheets with controllable twisting. Nano Lett. 21, 7159–7165 (2021).

    Google Scholar 

  118. De Volder, M. F., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

    Google Scholar 

  119. Walters, D. et al. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74, 3803–3805 (1999).

    Google Scholar 

  120. Lian, J. et al. Catastrophic vs gradual collapse of thin-walled nanocrystalline Ni hollow cylinders as building blocks of microlattice structures. Nano Lett. 11, 4118–4125 (2011).

    Google Scholar 

  121. Kwon, H., Lee, S. H. & Kim, J. K. Three-dimensional metal-oxide nanohelix arrays fabricated by oblique angle deposition: fabrication, properties, and applications. Nanoscale Res. Lett. 10, 1–12 (2015).

    Google Scholar 

  122. Zhang, H.-F., Wang, C.-M., Buck, E. C. & Wang, L.-S. Synthesis, characterization, and manipulation of helical SiO2 nanosprings. Nano Lett. 3, 577–580 (2003).

    Google Scholar 

  123. Poggi, M. A. et al. Measuring the compression of a carbon nanospring. Nano Lett. 4, 1009–1016 (2004).

    Google Scholar 

  124. Bell, D. J. et al. Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings. Nano Lett. 6, 725–729 (2006).

    Google Scholar 

  125. Du, Z., Zhou, X., Ye, P., Zeng, X. & Gan, C. L. Shape-memory actuation in aligned zirconia nanofibers for artificial muscle applications at elevated temperatures. ACS Appl. Nano Mater. 3, 2156–2166 (2020).

    Google Scholar 

  126. Callens, S. J. & Zadpoor, A. A. From flat sheets to curved geometries: Origami and kirigami approaches. Mater. Today 21, 241–264 (2018).

    Google Scholar 

  127. Ning, X. et al. Assembly of advanced materials into 3D functional structures by methods inspired by Origami and Kirigami: a review. Adv. Mater. Interfaces 5, 1800284 (2018).

    Google Scholar 

  128. Chen, S., Chan, K. C., Yue, T. M. & Wu, F. Highly stretchable kirigami metallic glass structures with ultra-small strain energy loss. Scr. Mater. 142, 83–87 (2018).

    Google Scholar 

  129. Yong, K. et al. Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today 34, 58–65 (2020).

    Google Scholar 

  130. Guan, Y. S., Zhang, Z., Tang, Y., Yin, J. & Ren, S. Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv. Mater. 30, 1706390 (2018).

    Google Scholar 

  131. Wu, Y. et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nat. Commun. 6, 6141 (2015).

    Google Scholar 

  132. Liu, Y. et al. Scalable-produced 3D elastic thermoelectric network for body heat harvesting. Nat. Commun. 14, 3058 (2023).

    Google Scholar 

  133. Ye, J. et al. Ultra-low-density digitally architected carbon with a strutted tube-in-tube structure. Nat. Mater. 20, 1498–1505 (2021).

    Google Scholar 

  134. Zhang, M. et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency. Sci. Adv. 6, eaba5581 (2020).

    Google Scholar 

  135. Li, F. C. et al. Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Mater. Today Adv. 4, 100027 (2019).

    Google Scholar 

  136. Li, F. et al. Understanding yielding and the unusual ductile-brittle-ductile transition in Fe-based amorphous nanocrystalline alloy: A combined micromechanical and thermodynamic study. J. Mech. Phys. Solids 132, 103681 (2019).

    Google Scholar 

  137. Boyce, B., Michael, J. & Kotula, P. Fatigue of metallic microdevices and the role of fatigue-induced surface oxides. Acta Mater. 52, 1609–1619 (2004).

    Google Scholar 

  138. Lin, Y.-C. et al. Metallic glass as a mechanical material for microscanners. Adv. Funct. Mater. 25, 5677–5682 (2015).

    Google Scholar 

  139. Dudley D., Duncan W. M. & Slaughter J. Emerging digital micromirror device (DMD) applications. MOEMS display and imaging systems: SPIE; 2003. p. 14–25.

  140. Phan, T. A., Hara, M., Oguchi, H. & Kuwano, H. Current sensors using Fe–B–Nd–Nb magnetic metallic glass micro-cantilevers. Microelectron. Eng. 135, 28–31 (2015).

    Google Scholar 

  141. Kumar, G., Desai, A. & Schroers, J. Bulk metallic glass: the smaller the better. Adv. Mater. 23, 461–476 (2011).

    Google Scholar 

  142. Axinte, E. Metallic glasses from “alchemy” to pure science: Present and future of design, processing and applications of glassy metals. Mater. Des. 35, 518–556 (2012).

    Google Scholar 

  143. Hammock, M. L., Chortos, A., Tee, B. C. K., Tok, J. B. H. & Bao, Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

    Google Scholar 

  144. Lee, J. H., Cho, K. & Kim, J. K. Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 36, 2310505 (2024).

    Google Scholar 

  145. Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    Google Scholar 

  146. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Google Scholar 

  147. Wang, P. et al. The evolution of flexible electronics: from nature, beyond nature, and to nature. Adv. Sci. 7, 2001116 (2020).

    Google Scholar 

  148. Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).

    Google Scholar 

  149. Telford, M. The case for bulk metallic glass. Mater. today 7, 36–43 (2004).

    Google Scholar 

Download references

Acknowledgements

Y.Y. gratefully acknowledges the support of the Research Grants Council (RGC), Hong Kong government, through the General Research Fund (GRF) with the grant number CityU 11206362 and through the NSFC-RGC joint research scheme with the grant number of N_CityU 109/21. Y.H.L. acknowledges support from the State Key Program of National Natural Science of China (grant no. 52331007). F.L. acknowledges support from the National Natural Science Foundation of China (grant no. 52201195). S.R. acknowledges support from the National Natural Science Foundation of China (grant no. 52371160) and the National KeyR&D Program of China (grant no. 2024YFB3817600).

Author information

Authors and Affiliations

  1. Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China

    Fucheng Li, Weijie Xie & Yanhui Liu

  2. Center for Advanced Smart Materials, Yongjiang Laboratory, Ningbo, 315201, China

    Shuai Ren

  3. Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, China

    Shuai Ren & Yong Yang

  4. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China

    Yanhui Liu

  5. Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, China

    Yong Yang

  6. Department of System Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, China

    Yong Yang

Authors
  1. Fucheng Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Shuai Ren
    View author publications

    Search author on:PubMed Google Scholar

  3. Weijie Xie
    View author publications

    Search author on:PubMed Google Scholar

  4. Yanhui Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. Yong Yang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

F.L., Y.L., and Y.Y. conceived the idea. Y.L. and Y.Y. supervised the projects. F.L., S.R., and W.X. wrote the manuscript. Y.L. and Y.Y. revised the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Yanhui Liu or Yong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Ren, S., Xie, W. et al. Superelasticity in micro/nanostructured materials. NPG Asia Mater (2026). https://doi.org/10.1038/s41427-026-00631-0

Download citation

  • Received: 24 January 2025

  • Revised: 15 October 2025

  • Accepted: 02 December 2025

  • Published: 28 January 2026

  • DOI: https://doi.org/10.1038/s41427-026-00631-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Editorial Summary

Advanced strategies for superelasticity in rigid materials

Superelasticity is highly desirable for applications in electronics, transportation, and medical devices. The study addresses the challenge of achieving superelasticity in rigid materials like metals and ceramics, which typically have limited recoverable strain. Researchers have investigated how reducing material size to the micro- or nanoscale can enhance elasticity. They used methods like in-situ tensile testing on tiny samples to observe changes in elasticity. This approach is important because smaller materials often show improved mechanical properties. The findings reveal that micro/nano-sized materials can achieve superelasticity by forming defect-free structures or using phase transformations. These materials can recover large strains, making them suitable for advanced applications. The study concludes that micro/nanostructuring can significantly improve material performance, paving the way for future innovations in various fields. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • About the Editors
  • Contact
  • For Advertisers
  • Press Releases
  • Open Access Fees and Funding

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

NPG Asia Materials (NPG Asia Mater)

ISSN 1884-4057 (online)

ISSN 1884-4049 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited