Abstract
Achieving reversible strain greater than 1%, known as superelasticity, is highly desirable for practical applications across diverse fields, including medical care, transportation, and daily life. While conventional rigid materials, such as metals and ceramics, exhibit limited elastic deformation, advanced materials like amorphous alloys, high entropy alloys, and shape memory alloys demonstrate an enhanced elastic strain limit (≥1%) through mechanisms such as structural disordering, lattice distortion, or phase transformation. Further improvements in recoverable deformation can be achieved by incorporating micro/nanostructures into both conventional and advanced rigid materials. In this review, we systematically explore strategies for micro/nanostructuring rigid materials, including metals and covalent materials, to enhance their superelastic properties. Firstly, we examine the size effects on the elasticity or pseudoelasticity of rigid materials, with a particular focus on the superelastic behavior of small-sized materials. Secondly, we discuss how small-sized superelastic materials can serve as structural units to design geometrically complex micro/nanostructures and micro/nanocomposites, highlighting examples that exhibit exceptional reversible deformation capabilities. Finally, we review the potential applications of micro/nanostructured superelastic materials in nanotechnology and structural engineering, underscoring their transformative potential in these fields.
Similar content being viewed by others
References
Sun, L., Gibson, R. F., Gordaninejad, F. & Suhr, J. Energy absorption capability of nanocomposites: a review. Compos. Sci. Technol. 69, 2392–2409 (2009).
Juan, J. S., Nó, M. L. & Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 4, 415–419 (2009).
Wilson, S. A. et al. New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng.: R: Rep. 56, 1–129 (2007).
Nie, Z., Kwak, J. W., Han, M. & Rogers, J. A. Mechanically active materials and devices for bio-interfaced pressure sensors—a review. Adv. Mater. 36, 2205609 (2024).
Morgan, N. B. Medical shape memory alloy applications—the market and its products. Mater. Sci. Eng.: A 378, 16–23 (2004).
Zheng, W. et al. Realizing reversible phase transformation of shape memory ceramics constrained in aluminum. Nat. Commun. 14, 7103 (2023).
Ashby, M. & Greer, A. L. Metallic glasses as structural materials. Scr. Mater. 54, 321–326 (2006).
Yue, Y., Liu, P., Zhang, Z., Han, X. & Ma, E. Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 11, 3151–3155 (2011).
Tian, L. et al. Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 3, 609 (2012).
Zhang, H. et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci. Adv. 2, e1501382 (2016).
Jani, J. M., Leary, M., Subic, A. & Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. (1980–2015) 56, 1078–1113 (2014).
Schlom, D. G. et al. Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118–130 (2014).
Pang, E. L., Olson, G. B. & Schuh, C. A. Low-hysteresis shape-memory ceramics designed by multimode modelling. Nature 610, 491–495 (2022).
Cheng, T., Zhang, Y., Lai, W.-Y. & Huang, W. Stretchable Thin-film Electrodes For Flexible Electronics With High Deformability And Stretchability. Adv. Mater. 27, 3349–3376 (2015).
Tanaka, Y. et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327, 1488–1490 (2010).
Chen, H. et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat. Mater. 19, 712–718 (2020).
Xu, S. et al. Non-Hookean large elastic deformation in bulk crystalline metals. Nat. Commun. 13, 5307 (2022).
Odaira, T. et al. Flexible and tough superelastic Co–Cr alloys for biomedical applications. Adv. Mater. 34, 2202305 (2022).
Otsuka, K., Sakamoto, H. & Shimizu, K. Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys. Acta Metall. 27, 585–601 (1979).
Dang, P. et al. Ultrahigh Elastic Energy Storage In Nanocrystalline Alloys With Martensite Nanodomains. Adv. Mater. 36, 2408275 (2024).
Johnson, W. & Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).
He, Q. et al. A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 602, 251–257 (2022).
Hao, S. et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science 339, 1191–1194 (2013).
Li, F. et al. Oxidation-induced superelasticity in metallic glass nanotubes. Nat. Mater. 23, 52–57 (2024).
Gao, P. X., Mai, W. & Wang, Z. L. Superelasticity and nanofracture mechanics of ZnO nanohelices. Nano Lett. 6, 2536–2543 (2006).
Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).
Shyu, T. C. et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 14, 785–789 (2015).
Dang, C. et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science 371, 76–78 (2021).
Si, Y., Yu, J., Tang, X., Ge, J. & Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014).
Si, Y. et al. Ultralight Biomass-Derived Carbonaceous Nanofibrous Aerogels with Superelasticity and High Pressure-Sensitivity. Adv. Mater. 28, 9512–9518 (2016).
Li, L. et al. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 11, 62 (2020).
Liu, H. et al. Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nat. Commun. 13, 3420 (2022).
Si, Y., Wang, X., Dou, L., Yu, J. & Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4, eaas8925 (2018).
Latorre, E. et al. Active superelasticity in three-dimensional epithelia of controlled shape. Nature 563, 203–208 (2018).
Otsuka K., Wayman C. M. Shape memory materials: Cambridge University Press (1999).
Tahara, M., Kim, H. Y., Inamura, T., Hosoda, H. & Miyazaki, S. Lattice modulation and superelasticity in oxygen-added β-Ti alloys. Acta Mater. 59, 6208–6218 (2011).
Johnson, W. L. & Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).
Zhang J. Achieving 5.9% elastic strain in kilograms of metallic glasses: Nanoscopic strain engineering goes macro. Materials Today. 2020.
Saito, T. et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464–467 (2003).
Talling, R. J., Dashwood, R. J., Jackson, M. & Dye, D. On the mechanism of superelasticity in Gum metal. Acta Mater. 57, 1188–1198 (2009).
Sypek, J. T. et al. Superelasticity and cryogenic linear shape memory effects of CaFe2As2. Nat. Commun. 8, 1083 (2017).
Lai, A., Du, Z., Gan, C. L. & Schuh, C. A. Shape memory and superelastic ceramics at small scales. Science 341, 1505–1508 (2013).
Wang C. et al. Reversible shuffle twinning yields anisotropic tensile superelasticity in ceramic GeSe. Nat. Nanotechnol.1–8. (2025).
Seo J., Kim Y. C. & Hu J. W. Pilot study for investigating the cyclic behavior of slit damper systems with recentering Shape Memory Alloy (SMA) bending bars used for seismic restrainers. Appl. Sci. 2015. p. 187–208.
Otsuka, K. & Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005).
Xia, J. et al. Iron-based superelastic alloys with near-constant critical stress temperature dependence. Science 369, 855–858 (2020).
Lecce, L. Shape memory alloy engineering: for aerospace, structural and biomedical applications: Elsevier (2014).
Otsuka, K. & Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005).
Sarkar, S., Ren, X. & Otsuka, K. Evidence for Strain Glass in the Ferroelastic-Martensitic System Ti50-xNi50+x. Phys. Rev. Lett. 95, 205702 (2005).
Wang, Y., Ren, X. & Otsuka, K. Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97, 225703 (2006).
Ren, X. Strain glass and ferroic glass – Unusual properties from glassy nano-domains. Phys. Status Solidi (B) 251, 1982–1992 (2014).
Wang, Y., Ren, X., Otsuka, K. & Saxena, A. Evidence for broken ergodicity in strain glass. Phys. Rev. B 76, 132201 (2007).
Zhou, Y. et al. Direct Evidence For Local Symmetry Breaking During A Strain Glass Transition. Phys. Rev. Lett. 112, 025701 (2014).
Rao, W.-F., Wuttig, M. & Khachaturyan, A. G. Giant nonhysteretic responses of two-phase nanostructured alloys. Phys. Rev. Lett. 106, 105703 (2011).
Rao, W.-F. & Khachaturyan, A. G. Giant quasi-elastic responses in decomposed two-phase nanodispersions: Phase field modeling. Acta Mater. 60, 443–456 (2012).
Wang, Y. et al. Strain glass transition in a multifunctional β-type Ti alloy. Sci. Rep. 4, 3995 (2014).
Wang, D. et al. Superelasticity of slim hysteresis over a wide temperature range by nanodomains of martensite. Acta Mater. 66, 349–359 (2014).
Ren, S. et al. Low-field-triggered large magnetostriction in Iron-Palladium strain glass alloys. Phys. Rev. Lett. 119, 125701 (2017).
Liu, C. et al. A lightweight strain glass alloy showing nearly temperature-independent low modulus and high strength. Nat. Mater. 21, 1003–1007 (2022).
Xu, Z. et al. A polymer-like ultrahigh-strength metal alloy. Nature 633, 575–581 (2024).
Li, S. et al. Superelasticity in BCC nanowires by a reversible twinning mechanism. Phys. Rev. B—Condens. Matter Mater. Phys. 82, 205435 (2010).
Wu, F., Liu, Y., Si, Y., Yu, J. & Ding, B. Multiphase ceramic nanofibers with super-elasticity from− 196–1600 °C. Nano Today 44, 101455 (2022).
Cao, Z., Zhao, W., Liu, Q., Liang, A. & Zhang, J. Super-elasticity and ultralow friction of hydrogenated fullerene-like carbon films: associated with the size of graphene sheets. Adv. Mater. Interfaces 5, 1701303 (2018).
Banerjee, A. et al. Ultralarge elastic deformation of nanoscale diamond. Science 360, 300–302 (2018).
Hsin, C. L. et al. Elastic properties and buckling of silicon nanowires. Adv. Mater. 20, 3919–3923 (2008).
Wang, J. et al. Strong Hall–Petch type behavior in the elastic strain limit of nanotwinned gold nanowires. Nano Lett. 15, 3865–3870 (2015).
Cuenot, S., Frétigny, C., Demoustier-Champagne, S. & Nysten, B. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004).
Yao H., Yun G., Bai N. & Li J. Surface elasticity effect on the size-dependent elastic property of nanowires. J. Appl. Phys. 111. (2012).
Wang T. et al. Low-cost scalable production of freestanding two-dimensional metallic nanosheets by polymer surface buckling enabled exfoliation. Cell Rep. Phys. Sci. 1. (2020).
Falvo, M. R. et al. Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997).
Li, J., Shan, Z. & Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 39, 108–114 (2014).
Seo, M. H., Yoo, J. Y., Jo, M. S. & Yoon, J. B. Geometrically structured nanomaterials for nanosensors, NEMS, and nanosieves. Adv. Mater. 32, 1907082 (2020).
Brenner, S. S. Growth and properties of “Whiskers. Science 128, 569–575 (1958).
Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010).
Richter, G. et al. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048–3052 (2009).
Wang, L. et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 4, 2413 (2013).
Chu, M., Sun, Y., Aghoram, U. & Thompson, S. E. Strain: A solution for higher carrier mobility in nanoscale MOSFETs. Annu. Rev. Mater. Res. 39, 203–229 (2009).
You, B. et al. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31, 1807001 (2019).
Eisner, R. Tensile tests on silicon whiskers. Acta Metall. 3, 414–415 (1955).
Pearson, G., Read, J.rW. & Feldmann, W. L. Deformation and fracture of small silicon crystals. Acta Metall. 5, 181–191 (1957).
Hoffmann, S. et al. Measurement of the bending strength of vapor− liquid− solid grown silicon nanowires. Nano Lett. 6, 622–625 (2006).
Li, X., Ono, T., Wang, Y. & Esashi, M. Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus. Appl. Phys. Lett. 83, 3081–3083 (2003).
Zhu, Y., Xu, F., Qin, Q., Fung, W. Y. & Lu, W. Mechanical properties of vapor− liquid− solid synthesized silicon nanowires. Nano Lett. 9, 3934–3939 (2009).
May, P. W. The new diamond age? Science 319, 1490–1491 (2008).
Nie, A. et al. Approaching diamond’s theoretical elasticity and strength limits. Nat. Commun. 10, 5533 (2019).
Ibarra A., Caillard D., San Juan J. & Nó M. L. Martensite nucleation on dislocations in Cu–Al–Ni shape memory alloys. Appl. Phys. Lett. 90. (2007).
San Juan, J., Nó, M. L. & Schuh, C. A. Superelasticity and shape memory in micro-and nanometer-scale pillars. Adv. Mater. 20, 272–278 (2008).
Zheng, X. et al. Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016).
Cheng, Y. Q. & Ma, E. Intrinsic shear strength of metallic glass. Acta Mater. 59, 1800–1807 (2011).
Jiang, Q. K. et al. Super elastic strain limit in metallic glass films. Sci. Rep. 2, 852 (2012).
Jiang, Q. et al. The effect of size on the elastic strain limit in Ni60Nb40 glassy films. Acta Mater. 61, 4689–4695 (2013).
Mavrič, A., Valant, M., Cui, C. & Wang, Z. M. Advanced applications of amorphous alumina: From nano to bulk. J. Non-Cryst. Solids 521, 119493 (2019).
Zheng, K. et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 1, 24 (2010).
Frankberg, E. J. et al. Exceptional Microscale Plasticity in Amorphous Aluminum Oxide at Room Temperature. Adv. Mater. 35, 2303142 (2023).
Kohli, J. T., Hubert, M., Youngman, R. E. & Morse, D. L. A Corning perspective on the future of technical glass in our evolving world. Int. J. Appl. Glass Sci. 13, 292–307 (2022).
Waitz, T., Kazykhanov, V. & Karnthaler, H. P. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 52, 137–147 (2004).
Fu, Y. Q. et al. On the lower thickness boundary of sputtered TiNi films for shape memory application. Thin Solid Films 515, 80–86 (2006).
Qiao, L. & Radovitzky, R. Investigation of the role of Ti oxide layer in the size-dependent superelasticity of NiTi pillars: Modeling and simulation. Acta Mater. 61, 6213–6221 (2013).
Ibarra, A., San Juan, J., Bocanegra, E., Caillard, D. & Nó, M. In situ” and “Post-mortem” TEM study of the super-elastic effect in Cu–Al–Ni shape memory alloys. Mater. Sci. Eng.: A 438, 787–790 (2006).
Gómez-Cortés, J. F. et al. Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale. Nat. Nanotechnol. 12, 790–796 (2017).
Gómez-Cortés, J. F. et al. Ultrahigh superelastic damping at the nano-scale: A robust phenomenon to improve smart MEMS devices. Acta Mater. 166, 346–356 (2019).
REYES-MOREL, P. E., CHERNG, J. S. & Chen, I. W. Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals: II, pseudoelasticity and shape memory effect. J. Am. Ceram. Soc. 71, 648–657 (1988).
Du, Z. et al. Size effects and shape memory properties in ZrO2 ceramic micro-and nano-pillars. Scr. Mater. 101, 40–43 (2015).
Zhang, J. et al. A nanoscale shape memory oxide. Nat. Commun. 4, 2768 (2013).
Tian, L. et al. Tailoring centripetal metamaterial with superelasticity and negative Poisson’s ratio for organic solvents adsorption. Sci. Adv. 8, eabo1014 (2022).
Zhao, K. et al. Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures. Sci. Adv. 5, eaav2589 (2019).
Yin, J., Li, X., Zhou, J. & Guo, W. Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano Lett. 13, 3232–3236 (2013).
Zhang, Q. et al. Hyperbolically patterned 3D graphene metamaterial with negative Poisson’s ratio and superelasticity. Adv. Mater. 28, 2229–2237 (2016).
Wang, Y., Zhu, Y., Wang, F., Liu, X. & Wu, H. Super-elasticity and deformation mechanism of three-dimensional pillared graphene network structures. Carbon 118, 588–596 (2017).
Zhang, Q. et al. Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Adv. Mater. 29, 1605506 (2017).
Xue, Y. et al. Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures. ACS Nano 11, 558–568 (2017).
Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).
Jang, D., Meza, L. R., Greer, F. & Greer, J. R. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat. Mater. 12, 893–898 (2013).
Lee, S.-W., Jafary-Zadeh, M., Chen, D. Z., Zhang, Y.-W. & Greer, J. R. Size effect suppresses brittle failure in hollow Cu60Zr40 metallic glass nanolattices deformed at cryogenic temperatures. Nano Lett. 15, 5673–5681 (2015).
Chen, J.-K., Chen, W.-T., Cheng, C.-C., Yu, C.-C. & Chu, J. P. Metallic glass nanotube arrays: Preparation and surface characterizations. Mater. Today 21, 178–185 (2018).
Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
Wang, T., Zhang, Z., Park, M., Yu, Q. & Yang, Y. Etching-free ultrafast fabrication of self-rolled metallic nanosheets with controllable twisting. Nano Lett. 21, 7159–7165 (2021).
De Volder, M. F., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).
Walters, D. et al. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74, 3803–3805 (1999).
Lian, J. et al. Catastrophic vs gradual collapse of thin-walled nanocrystalline Ni hollow cylinders as building blocks of microlattice structures. Nano Lett. 11, 4118–4125 (2011).
Kwon, H., Lee, S. H. & Kim, J. K. Three-dimensional metal-oxide nanohelix arrays fabricated by oblique angle deposition: fabrication, properties, and applications. Nanoscale Res. Lett. 10, 1–12 (2015).
Zhang, H.-F., Wang, C.-M., Buck, E. C. & Wang, L.-S. Synthesis, characterization, and manipulation of helical SiO2 nanosprings. Nano Lett. 3, 577–580 (2003).
Poggi, M. A. et al. Measuring the compression of a carbon nanospring. Nano Lett. 4, 1009–1016 (2004).
Bell, D. J. et al. Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings. Nano Lett. 6, 725–729 (2006).
Du, Z., Zhou, X., Ye, P., Zeng, X. & Gan, C. L. Shape-memory actuation in aligned zirconia nanofibers for artificial muscle applications at elevated temperatures. ACS Appl. Nano Mater. 3, 2156–2166 (2020).
Callens, S. J. & Zadpoor, A. A. From flat sheets to curved geometries: Origami and kirigami approaches. Mater. Today 21, 241–264 (2018).
Ning, X. et al. Assembly of advanced materials into 3D functional structures by methods inspired by Origami and Kirigami: a review. Adv. Mater. Interfaces 5, 1800284 (2018).
Chen, S., Chan, K. C., Yue, T. M. & Wu, F. Highly stretchable kirigami metallic glass structures with ultra-small strain energy loss. Scr. Mater. 142, 83–87 (2018).
Yong, K. et al. Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today 34, 58–65 (2020).
Guan, Y. S., Zhang, Z., Tang, Y., Yin, J. & Ren, S. Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv. Mater. 30, 1706390 (2018).
Wu, Y. et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nat. Commun. 6, 6141 (2015).
Liu, Y. et al. Scalable-produced 3D elastic thermoelectric network for body heat harvesting. Nat. Commun. 14, 3058 (2023).
Ye, J. et al. Ultra-low-density digitally architected carbon with a strutted tube-in-tube structure. Nat. Mater. 20, 1498–1505 (2021).
Zhang, M. et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency. Sci. Adv. 6, eaba5581 (2020).
Li, F. C. et al. Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Mater. Today Adv. 4, 100027 (2019).
Li, F. et al. Understanding yielding and the unusual ductile-brittle-ductile transition in Fe-based amorphous nanocrystalline alloy: A combined micromechanical and thermodynamic study. J. Mech. Phys. Solids 132, 103681 (2019).
Boyce, B., Michael, J. & Kotula, P. Fatigue of metallic microdevices and the role of fatigue-induced surface oxides. Acta Mater. 52, 1609–1619 (2004).
Lin, Y.-C. et al. Metallic glass as a mechanical material for microscanners. Adv. Funct. Mater. 25, 5677–5682 (2015).
Dudley D., Duncan W. M. & Slaughter J. Emerging digital micromirror device (DMD) applications. MOEMS display and imaging systems: SPIE; 2003. p. 14–25.
Phan, T. A., Hara, M., Oguchi, H. & Kuwano, H. Current sensors using Fe–B–Nd–Nb magnetic metallic glass micro-cantilevers. Microelectron. Eng. 135, 28–31 (2015).
Kumar, G., Desai, A. & Schroers, J. Bulk metallic glass: the smaller the better. Adv. Mater. 23, 461–476 (2011).
Axinte, E. Metallic glasses from “alchemy” to pure science: Present and future of design, processing and applications of glassy metals. Mater. Des. 35, 518–556 (2012).
Hammock, M. L., Chortos, A., Tee, B. C. K., Tok, J. B. H. & Bao, Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).
Lee, J. H., Cho, K. & Kim, J. K. Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 36, 2310505 (2024).
Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).
Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).
Wang, P. et al. The evolution of flexible electronics: from nature, beyond nature, and to nature. Adv. Sci. 7, 2001116 (2020).
Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).
Telford, M. The case for bulk metallic glass. Mater. today 7, 36–43 (2004).
Acknowledgements
Y.Y. gratefully acknowledges the support of the Research Grants Council (RGC), Hong Kong government, through the General Research Fund (GRF) with the grant number CityU 11206362 and through the NSFC-RGC joint research scheme with the grant number of N_CityU 109/21. Y.H.L. acknowledges support from the State Key Program of National Natural Science of China (grant no. 52331007). F.L. acknowledges support from the National Natural Science Foundation of China (grant no. 52201195). S.R. acknowledges support from the National Natural Science Foundation of China (grant no. 52371160) and the National KeyR&D Program of China (grant no. 2024YFB3817600).
Author information
Authors and Affiliations
Contributions
F.L., Y.L., and Y.Y. conceived the idea. Y.L. and Y.Y. supervised the projects. F.L., S.R., and W.X. wrote the manuscript. Y.L. and Y.Y. revised the manuscript. All authors approved the final version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Li, F., Ren, S., Xie, W. et al. Superelasticity in micro/nanostructured materials. NPG Asia Mater (2026). https://doi.org/10.1038/s41427-026-00631-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41427-026-00631-0


