Abstract
The hierarchical structure of spherulites grown isothermally from a melt was investigated for isotactic poly(butene-1) (it-PB-1) by analyzing wide-angle and small-angle X-ray scattering data measured simultaneously at various positions of the spherulites using a synchrotron X-ray microbeam technique. In square-shaped spherulites (hedrites) grown at 103 °C, the chain axis stands along the direction normal to the spherulite surface and the a and b axes of the original form II crystal direct in parallel to the square edges. On the other hand, for round-shape spherulites grown at 98 °C, the chain axis lies tangentially along the circle of the round spherulite surface. These spatial geometries, revealed by the X-ray microbeam method, have confirmed previously-reported results that were qualitatively derived from 2-dimensional polarized FTIR imaging experiments [J Phys Chem B. 2016;120:4689]. Surprisingly, only a 5 °C difference in the isothermal crystallization temperature gives rise to remarkably different hierarchical structures of it-PB-1, as clarified by the X-ray microbeam technique.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Luciani L, Seppälä J, Löfgren B. Poly-1-butene: its preparation, properties and challenges. Prog Polym Sci. 1988;13:37–62.
Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, Moraglio G. High Polymers of α-Olefins. J Am Chem Soc. 1955;77:1708–10.
Natta G, Pino P, Mazzanti G, Corradini P, Giannini U. Synthesis and properties of crystalline high polymers of branched α-olefins. Rend Accad Naz Lince-. 1955;19:404.
Natta VG, Corradini P, Bassi IW. uber die Kristallstriiktur des Isotaktischen Poly-α-butens. Die Makromol Chem. 1956;21:240–4.
Natta G, Corradini P, Bassi IW. Crystal structure of isotactic poly-alpha-butene. Nuovo Cim Suppl. 1960;15:52–67.
Miller R, Nielsen L. Crystallographic Data for Various Polymers II. J Polym Sci. 1961;55:643–56.
Tashiro K, Asanaga H, Ishino K, Tazaki R, Kobayashi M. Development of a new software for the X-ray structural analysis of polymer crystals by utilizing the X-ray imaging plate system. J Polym Sci Part B Polym Phys. 1997;35:1677–1700.
Turner AJ. Polybutene-1-type II crystalline form. J Polym Sci Part B Polym Phys. 1963;1:455–6.
Miller RL, Holland VF. On transformations in isotactic polybutene-1. J Polym Sci Part B Polym Lett. 1964;2:519–21.
Petraccone V, Pirozzi B, Frasci A, Corradini P. Polymorphism of isotactic poly-α-butene conformational analysis of the chain and crystalline structure of form 2. Eur Polym J. 1976;12:323–7.
Boor J, Mitchel JC. Apparent nucleation of a crystal-crystal transition in poly-1-butene. J Polym Sci. 1962;62:70–73.
Rubin I. Relative stabilities of polymorphs of polybutene-1 obtained from the melt. Polym Lett. 1964;2:747–9.
Holland VF, Miller RL. Isotactic polybutene-1 single crystals: morphology. J Appl Phys. 1964;35:3241–8.
Danusso F, Gianotti G. Isotactic polybutene-l : formation and transformation of modification 2. Makromol Chem. 1965;88:149–58.
Tosaka M, Kamijo T, Tsuji M, Kohjiya S, Ogawa T, Isoda S, Kobayashi T. High-resolution transmission electron microscopy of crystal transformation in solution-grown lamellae of isotactic polybutene-1. Macromolecules. 2000;33:9666–72.
Danusso F, Gianotti G, Polizzotti G. Isotactic polybutene-1: modification 3 and Its transformations. Die Makromol Chem. 1964;80:13–21.
Cojazzi J, Malta V, Celotti G, Zannetti R. Crystal structure of form III of isotactic poly-1-butene. Makromol Chem. 1976;177:915–26.
Danusso F, Gianotti G. The three polymorphs of isotactic polybutene-1 : dilatometric and thermodynamic fusion properties. Die Makromol Chem. 1963;61:139–56.
Clampitt BH, Hughes RH. Differential thermal analysis of polybutene-1. J Polym Sci Part C. 1964;6:43–51.
Maring D, Wilhelm M, Spiess HW, Meurer B, Weill G. Dynamics in the crystalline polymorphic forms I and II and form III of isotactic poly-1-butene. J Polym Sci Part B Polym Phys. 2000;38:2611–24.
Boor J Jr, Youngman EA. Polymorphism in poly-1-butene: apparent direct formation of modification I. J Polym Sci. 1964;2:903–7.
Rakus JP, Mason CDJ. The direct formation of modification I polybutene-1. Polym Sci Part B. 1966;4:467–8.
Schaffhauser RJ. On the nature of the form II to form I transformation in isotactic polybutene-1. J Polym Sci Part B Polym Phys. 1967;5:839–41.
Armeniades CD, Baer E. Effect of pressure on the polymorphism of melt crystallized polybutene-1. J Macromol Sci Part B Phys. 1967;1:309–34.
Nakafuku C, Miyaki T. Effect of pressure on the melting and crystallization behaviour of isotactic polybutene-1. Polymer. 1982;24:141–8.
Kopp S, Wittmann JC, Lotz B. Phase II to phase I crystal transformation in polybutene-1 single crystals: a reinvestigation. Polymer. 1994;35:916–24.
Nakamura K, Aoike T, Usaka K, Kanamoto T. Phase transformation in poly(1-butene) upon drawing. Macromolecules. 1999;32:4975–82.
Miyoshi T, Hayashi S, Imashiro F, Kaito A. Chain dynamics, conformations, and phase transformations for form III polymorph of isotactic poly (1-butene) investigated by high-resolution solid-state 13C NMR spectroscopy and molecular mechanics calculations. Macromolecules. 2002;35:2624–32.
Miyoshi T, Hayashi S, Imashiro F, Kaito A. Side-chain conformation and dynamics for the form II polymorph of isotactic poly(1-butene) investigated by high-resolution solid-state 13C NMR spectroscopy. Macromolecules. 2002;35:6060–3.
Fu Q, Heck B, Strobl G, Thomann YA. Temperature- and molar mass-dependent change in the crystallization mechanism of poly(1-butene): transition from chain-folded to chain-extended crystallization. Macromolecules. 2001;34:2502–11.
Yamashita M, Miyaji H, Hoshino A, Izumi K. Crystal growth of isotactic poly(butene-1) in the melt. I. Kinetic roughening. Polym J. 2004;36:226–37.
Yamashita M, Takahashi T. Melt crystallization of isotactic polybutene-1 trigonal form: the effect of side chain entropy on crystal growth kinetics. Polym J. 2008;40:996–1004.
Yamashita M. Regime II–III transition in isotactic polybutene-1 tetragonal crystal growth. Polymer. 2014;55:733–7.
Yamashita M, Hoshino A, Kato M. Isotactic poly(butene-1) trigonal crystal growth in the melt. J Polym Sci Part B Polym Phys. 2007;45:684–97.
Sasaguri K, Rhodes MB, Stein RS. Spherulite deformation in polybutene-1. Polym Lett. 1963;1:571–4.
Powers J, Hoffman JD, Weeks JJ, Quinn Jr. FA. Crystallization kinetics and polymorphic transformations in polybutene-1. J Res Nat Bur Stand A Phys Chem. 1965;69A:335–45.
Chau KW, Yang YC, Geil P. Tetragonal-twinned hexagonal crystal phase transformation in polybutene-1. J Mater Sci. 1986;21:3002–14.
Cavallo D, Gardella L, Portale G, Müller AJ, Alfonso G. Kinetics of cross-nucleation in isotactic poly(1-butene). Macromolecules. 2014;47:870–3.
Kajioka H, Taguchi K, Toda A. Cellular crystallization in thin melt film of it-poly(butene-1): an implication to spherulitic growth. Macromolecules. 2011;44:9239–46.
Qiao Y, Men Y. Intercrystalline links determined kinetics of form II to polymorphic transition in polybutene-1. Macromolecules. 2017;50:5490–7.
Patel GN, Patel RD. Growth mechanism of polymer hedrites. Eur Polym J. 1970;6:657–62.
Tashiro K, Hu J, Wang H, Hanesaka S, Alberto S. Refinement of the crystal structures of forms I and II of isotactic polybutene-1 and a proposal of phase transition mechanism between them. Macromolecules. 2016;49:1392–404.
Hu J, Tashiro K. Relation between higher-order structure and crystalline phase transition of oriented isotactic polybutene-1 investigated by temperature-dependent time-resolved simultaneous WAXD/SAXS measurements. Polymer. 2016;90:165–77.
Hu J, Tashiro K. Time-resolved imaging of the phase transition in the melt-grown spherulites of isotactic polybutene-1 as detected by the two-dimensional polarized IR imaging technique. J Phys Chem B. 2016;120:4689–98.
Fujiwara Y. II-I Phase transformation of melt-crystallized oriented Lamellae of polybutene-1 by shear deformation. Polym Bull. 1985;13:253–8.
Su F, Li X, Zhou W, Chen W, Li H, Cong Y, Hong Z, Qi Z, Li L. Accelerating crystal-crystal transition in poly(1-butene) with two-step crystallization: an in-situ microscopic infrared imaging and microbeam X-ray diffraction study. Polymer. 2013;54:3408–16.
Su F, Li X, Zhou W, Zhu S, Ji Y, Wang Z, Qi Z, Li L. Direct formation of isotactic poly(1-butene) form I crystal from memorized ordered melt. Macromolecules. 2013;46:7399–405.
Chen W, Li X, Li H, Su F, Zhou W, Li L. Deformation-induced crystal–crystal transition of polybutene-1: an in situ FTIR imaging study. J Mater Sci. 2013;48:4925–33.
Kajioka H, Yoshimoto S, Gosh RC, Taguchi K, Tanaka S, Toda A. Microbeam X-ray diffraction of non-banded polymer spherulites of it-polystyrene and it-poly(butene-1). Polymer. 2010;51:1837–44.
Tashiro K, Yoshioka T, Yamamoto H, Wang H, Woo EM, Funaki K, Murase H. Re-investigation of Lamellar Aggregation State in Polyester Spherulites by means of Synchrotron X-ray Microbeam: the Lamellae are twisted or not? Polym Prep Jpn. 2014;63:1315–6.
Kikuzuki T, Shinobara Y, Nozue Y, Ito K, Amemiya Y. Determination of Lamellar twisting manner in a banded spherulite with scanning microbeam X-ray scattering. Polymer. 2010;51:1632–8.
Kolb R, Wutz C, Stribeck N, von Krosigk G, Riekel C. Investigation of secondary crystallization of polymers by means of microbeam X-ray scattering. Polymer. 2001;42:5257–66.
Murthy NS. Recent developments in polymer characterization using X-ray diffraction. Rigaku J. 2004;21:15–24.
Breedon JE, Jackson JF, Marcinkowski MJ, Taylor ME Jr. Study of Polyethylene spherulites using scanning electron microscopy. J Mater Sci. 1973;8:1071–82.
Bassett DC, Hodge AM. On Lamellar Organization in Banded Spherulites of Polyethylene. PolymER. 1978;19:469–72.
Lustiger A, Lotz B, Duff TS. The morphology of the spherulitic surface in polyethylene. J Polym Sci Polym Phys. 1989;27:561–79.
Kunz M, Drechsler M, Möller M. Gelation crystallized ultra-high molecular weight polyethylene: 1. Structure in swollen and dried gels. Polymer. 1995;36:1331–9.
Keith HD. Banding in spherulites: two recurring topics. Polymer. 2001;42:09987–93.
Keith HD, Padden FJ. Banding in polyethylene and other spherulites. Macromolecules. 1996;29:7776–86.
Li Y, Huang H, He T, Wang Z. Rhythmic growth combined with Lamellar twisting induces poly(ethylene adipate) nested ring-banded structures. ACS Macro Lett. 2012;1:154–8.
Wang T, Wang H, Li H, Gan Z, Yan S. Banded spherulitic structures of poly(ethylene adipate), poly(butylene succinate) and in their blends. Phys Chem Chem Phys. 2009;11:1619–27.
Woo EM, Wang LY, Nurkhamidah S. Crystal Lamellae of opposite orientations by three-dimensional dissecting onto spherulites of poly(ethylene adipate) crystallized in bulk form. Macromolecules. 2012;45:1375–83.
Woo EM, Wu PL, Wu MC, Yan KC. Thermal behavior of ring-band vs. maltese-cross spherulites: case in monomorphic poly(ethylene adipate). Macromol Chem Physic. 2006;207:2232–43.
Donnay JDH, Harker D. A new law of crystal morphology extending the Law of Bravais. Am Mineral. 1937;22:446–67.
Massaro FR, Moret M, Bruno M, Rubbo M, Aquilano D. Equilibrium and growth morphology of oligoacenes: periodic bond chains (PBC) analysis of tetracene crystal. Cryst Growth Des. 2011;11:4639–46.
Carr JM, Langhe DS, Ponting MT, Hiltner A, Baer E. Confined crystallization in polymer nanolayered films: a review. J Mater Res. 2012;27:1326–50.
Acknowledgements
The synchrotron radiation experiments were performed at the BL03XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI). This study was financially supported by MEXT “Strategic Project to Support the Formation of Research Bases at Private Universities (2010-2014 and 2015-2019)”.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Tashiro, K., Yamamoto, H., Funaki, K. et al. Synchrotron microbeam X-ray scattering study of the crystallite orientation in the spherulites of isotactic poly(butene-1) crystallized isothermally at different temperatures. Polym J 51, 143–153 (2019). https://doi.org/10.1038/s41428-018-0128-5
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41428-018-0128-5
This article is cited by
-
Three representative types of WAXD/SAXS patterns to establish the bimodal structure concept of stacked lamellae in isotactic polypropylene spherulites
Polymer Journal (2024)
-
Synchrotron X-ray-analyzed inner structure of polyethylene spherulites and atomistic simulation of a trigger of the lamellar twisting phenomenon
Polymer Journal (2023)


