Abstract
The network structure evolution of a hexamethylenetetramine (HMTA)-cured novolac-type phenolic resin over a curing temperature range of 135–155 °C was investigated using 1H-pulse nuclear magnetic resonance spectroscopy and small-angle and wide-angle X-ray scattering techniques. The aim was to elucidate the mechanism responsible for the apparent absence of inhomogeneity after curing at 175 °C, in which the inhomogeneity was first observed at the gel point below 130 °C. The HMTA-cured phenolic resin exhibited high-cross-link and low-cross-link density domains (denoted as HXD and LXD, respectively). The LXD was a minor structure having a cross-link fraction of 0.2, which was 5–6 nm in size and comprised a few meshes. As curing proceeded, intradomain reactions in the LXD occurred, and the electron density in the domain increased, decreasing the electron density difference between the HXD and LXD. This reduction in the electron density difference decreased the cross-link inhomogeneity in the phenolic resins in terms of electron density fluctuations. This structural evolution caused the apparent absence of inhomogeneity in the fully HMTA-cured phenolic resins.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Gardziella A, Pilato LA, Knop A. Phenolic resins: Chemistry, applications, standardization, safety and ecology. 2nd completely rev. edn. Berlin: Springer; 1999.
de Boer JH. The influence of van der Waals’ forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins. Trans Faraday Soc. 1936;32:10–37.
Houwink R. The strength and modulus of elasticity of some amorphous materials, related to their internal structure. Trans Faraday Soc. 1936;32:122–31.
Pascault JP, Sautereau H, Verdu J, Williams RJJ. Thermosetting polymers. New York: Marcel Dekker; 2002.
Mijović J, Koutsky JA. Correlation between nodular morphology and fracture properties of cured epoxy-resins. Polymer. 1979;20:1095–107.
Bai SJ. Crosslink distribution of epoxy networks studied by small-angle neutron-scattering. Polymer. 1985;26:1053–7.
Dušek K. Are cured thermoset resins inhomogeneous? Angew Makromol Chem. 1996;240:1–15.
Vanlandingham MR, Eduljee RF, Gillespie JW. Relationships between stoichiometry, microstructure and properties for amine-cured epoxies. J Appl Polym Sci. 1999;71:699–712.
Duchet J, Pascault JP. Do epoxy-amine networks become inhomogeneous at the nanometric scale? J Polym Sci, Part B: Polym Phys. 2003;41:2422–32.
Kishi H, Naitou T, Matsuda S, Murakami A, Muraji Y, Nakagawa Y. Mechanical properties and inhomogeneous nanostructures of dicyandiamide-cured epoxy resins. J Polym Sci, Part B: Polym Phys. 2007;45:1425–34.
Morsch S, Liu Y, Lyon SB, Gibbon SR. Insights into epoxy network nanostructural heterogeneity using AFM-IR. ACS Appl Mater Interfaces. 2016;8:959–66.
Izumi A, Nakao T, Iwase H, Shibayama M. Structural analysis of cured phenolic resins using complementary small-angle neutron and X-ray scattering and scanning electron microscopy. Soft Matter. 2012;8:8438–45.
Izumi A, Nakao T, Shibayama M. Gelation and cross-link inhomogeneity of phenolic resins studied by 13C-NMR spectroscopy and small-angle X-ray scattering. Soft Matter. 2013;9:4188–97.
Izumi A, Nakao T, Shibayama M. Gelation and cross-link inhomogeneity of phenolic resins studied by small- and wide-angle X-ray scattering and 1H-pulse NMR spectroscopy. Polymer. 2015;59:226–33.
Izumi A, Shudo Y, Nakao T, Shibayama M. Cross-link inhomogeneity in phenolic resins at the initial stage of curing studied by 1H-pulse NMR spectroscopy and complementary SAXS/WAXS and SANS/WANS with a solvent-swelling technique. Polymer. 2016;103:152–62.
Roe RJ. Methods of X-ray and neutron scattering in polymer science. New York: Oxford University Press; 2000.
Bastide J, Candau SJ. Structure of gels as investigated by means of static scattering techniques. In: Cohen Addad JP, editor. Physical properties of polymeric gels. New York: John Wiley; 1996. pp. 143–308.
Wu WL, Shibayama M, Roy S, Kurokawa H, Coyne LD, Nomura S, et al. Physical gels of aqueous poly(vinyl alcohol) solutions: a small-angle neutron-scattering study. Macromolecules. 1990;23:2245–51.
Shibayama M. Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys. 1998;199:1–30.
Shibayama M. Small-angle neutron scattering on polymer gels: phase behavior, inhomogeneities and deformation mechanisms. Polym J. 2011;43:18–34.
Shibayama M. Structure-mechanical property relationship of tough hydrogels. Soft Matter. 2012;8:8030–8.
Cohen Addad JP (editor). NMR and statistical structures of gels. In: Physical properties of polymeric gels. New York: John Wiley; 1996. pp. 39–86.
Kimmich R, Fatkullin N. Polymer chain dynamics and NMR. Adv Polym Sci. 2004;170:1–113.
Asano A. NMR relaxation studies of elastomers. Annu Rep NMR Spectrosc. 2015;86:1–72.
Shudo Y, Izumi A, Hagita K, Nakao T, Shibayama M. Large-scale molecular dynamics simulation of crosslinked phenolic resins using pseudo-reaction model. Polymer. 2016;103:261–76.
Izumi A, Nakao T, Shibayama M. Synthesis and properties of a deuterated phenolic resin. J Polym Sci, Part A: Polym Chem. 2011;49:4941–7.
Masunaga H, Ogawa H, Takano T, Sasaki S, Goto S, Tanaka T, et al. Multipurpose soft-material SAXS/WAXS/GISAXS beamline at SPring-8. Polym J. 2011;43:471–7.
Takahara A, Takeda T, Kanaya T, Kido N, Sakurai K, Masunaga H, et al. Advanced soft material beamline consortium at SPring-8 (FSBL). Synchrotron Radiat News. 2014;27:19–23.
Izumi A, Shudo Y, Hagita K, Shibayama M. Molecular dynamics simulations of cross-linked phenolic resins using a united atom model. Macromol Theory Simul. 2018;27:1700103.
Acknowledgements
The SAXS experiments were conducted at the second hutch of SPring-8 BL03XU (Frontier Softmaterial Beamline (FSBL)) constructed by the Consortium of Advanced Softmaterial Beamline with the proposal numbers 2017A7209 and 2017B7261. This work was supported by the Photon and Quantum Basic Research Coordinated Development Program by MEXT with the grant number 13004017. This study was conducted as part of the research activities of the Special Interest Group on Thermosetting Resins in the FSBL Consortium comprising the Asahi Kasei research group, the DENSO research group, and the Sumitomo Bakelite research group.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Izumi, A., Shudo, Y. & Shibayama, M. Network structure evolution of a hexamethylenetetramine-cured phenolic resin. Polym J 51, 155–160 (2019). https://doi.org/10.1038/s41428-018-0133-8
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41428-018-0133-8


